Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets

2015 ◽  
Vol 89 (9) ◽  
pp. 1401-1438 ◽  
Author(s):  
Yow Keat Tham ◽  
Bianca C. Bernardo ◽  
Jenny Y. Y. Ooi ◽  
Kate L. Weeks ◽  
Julie R. McMullen
Physiology ◽  
2007 ◽  
Vol 22 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Abhinav Diwan ◽  
Gerald W. Dorn

Cardiac hypertrophy leads to heart failure, and both conditions can ultimately prove lethal. Here, traditional and novel mechanisms relating hypertrophy and heart failure are described at the physiological, cellular, and molecular levels. The rational application of these mechanistic considerations to therapeutics targeting hypertrophy and heart failure is discussed.


2019 ◽  
Vol 20 (19) ◽  
pp. 4714 ◽  
Author(s):  
Nadine Wehbe ◽  
Suzanne Nasser ◽  
Gianfranco Pintus ◽  
Adnan Badran ◽  
Ali Eid ◽  
...  

Like other organs, the heart undergoes normal adaptive remodeling, such as cardiac hypertrophy, with age. This remodeling, however, is intensified under stress and pathological conditions. Cardiac remodeling could be beneficial for a short period of time, to maintain a normal cardiac output in times of need; however, chronic cardiac hypertrophy may lead to heart failure and death. MicroRNAs (miRNAs) are known to have a role in the regulation of cardiac hypertrophy. This paper reviews recent advances in the field of miRNAs and cardiac hypertrophy, highlighting the latest findings for targeted genes and involved signaling pathways. By targeting pro-hypertrophic genes and signaling pathways, some of these miRNAs alleviate cardiac hypertrophy, while others enhance it. Therefore, miRNAs represent very promising potential pharmacotherapeutic targets for the management and treatment of cardiac hypertrophy.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Manuel Ramos-Kuri ◽  
Sri Harika Meka ◽  
Fabio Salamanca-Buentello ◽  
Roger J. Hajjar ◽  
Larissa Lipskaia ◽  
...  

Abstract The Ras family of small Guanosine Triphosphate (GTP)-binding proteins (G proteins) represents one of the main components of intracellular signal transduction required for normal cardiac growth, but is also critically involved in the development of cardiac hypertrophy and heart failure. The present review provides an update on the role of the H-, K- and N-Ras genes and their related pathways in cardiac diseases. We focus on cardiac hypertrophy and heart failure, where Ras has been studied the most. We also review other cardiac diseases, like genetic disorders related to Ras. The scope of the review extends from fundamental concepts to therapeutic applications. Although the three Ras genes have a nearly identical primary structure, there are important functional differences between them: H-Ras mainly regulates cardiomyocyte size, whereas K-Ras regulates cardiomyocyte proliferation. N-Ras is the least studied in cardiac cells and is less associated to cardiac defects. Clinically, oncogenic H-Ras causes Costello syndrome and facio-cutaneous-skeletal syndromes with hypertrophic cardiomyopathy and arrhythmias. On the other hand, oncogenic K-Ras and alterations of other genes of the Ras-Mitogen-Activated Protein Kinase (MAPK) pathway, like Raf, cause Noonan syndrome and cardio-facio-cutaneous syndromes characterized by cardiac hypertrophy and septal defects. We further review the modulation by Ras of key signaling pathways in the cardiomyocyte, including: (i) the classical Ras-Raf-MAPK pathway, which leads to a more physiological form of cardiac hypertrophy; as well as other pathways associated with pathological cardiac hypertrophy, like (ii) The SAPK (stress activated protein kinase) pathways p38 and JNK; and (iii) The alternative pathway Raf-Calcineurin-Nuclear Factor of Activated T cells (NFAT). Genetic alterations of Ras isoforms or of genes in the Ras-MAPK pathway result in Ras-opathies, conditions frequently associated with cardiac hypertrophy or septal defects among other cardiac diseases. Several studies underline the potential role of H- and K-Ras as a hinge between physiological and pathological cardiac hypertrophy, and as potential therapeutic targets in cardiac hypertrophy and failure. Graphic abstract


Author(s):  
Giuseppe Sgroi ◽  
Giulia Russo ◽  
Francesco Pappalardo

Abstract Summary Although several bioinformatics tools have been developed to examine signaling pathways, little attention has been given to ever long-distance crosstalk mechanisms. Here, we developed PETAL, a Python tool that automatically explores and detects the most relevant nodes within a KEGG pathway, scanning and performing an in-depth search. PETAL can contribute to discovering novel therapeutic targets or biomarkers that are potentially hidden and not considered in the network under study. Availability PETAL is a freely available open-source software. It runs on all platforms that support Python3. The user manual and source code are accessible from https://github.com/Pex2892/PETAL.


Sign in / Sign up

Export Citation Format

Share Document