Different inhibitory effects of kynurenic acid and a novel kynurenic acid analogue on tumour necrosis factor-α (TNF-α) production by mononuclear cells, HMGB1 production by monocytes and HNP1-3 secretion by neutrophils

2011 ◽  
Vol 383 (5) ◽  
pp. 447-455 ◽  
Author(s):  
Zoltán Tiszlavicz ◽  
Balázs Németh ◽  
Ferenc Fülöp ◽  
László Vécsei ◽  
Katalin Tápai ◽  
...  
Gut ◽  
1998 ◽  
Vol 42 (2) ◽  
pp. 227-234 ◽  
Author(s):  
I L P Beales ◽  
J Calam

Background—The cytokines interleukin 1β (IL-1β) and tumour necrosis factor α (TNF-α) are inhibitors of gastric acid secretion when administered systemically.Aims—To investigate the inhibitory effect of IL-1β and TNF-α on cultured, acid secreting parietal cells in order to determine the mechanism of this inhibition.Methods—Rabbit parietal cells were prepared by collagenase-EDTA digestion and counter flow elutriation. Acid secretory activity was assessed by aminopyrine accumulation.Results—IL-1β and TNF-α inhibited basal and stimulated acid secretion in a dose dependent manner; near maximal effects were seen with both at 10 ng/ml. Inhibition was maximal with 15 minutes pretreatment but seen with up to 18 hours of preincubation. Both cytokines inhibited histamine, carbachol, gastrin, forskolin, and A23187 stimulated acid secretion but had no effect on stimulation by dibutyryl-cAMP. Inhibition of acid secretion was not accompanied by a change in radioligand binding to histamine H2 or gastrin/CCKB receptors. Pertussis toxin abolished the inhibitory effects on histamine and forskolin stimulation. The tyrosine kinase inhibitor herbimycin reduced the inhibitory effects of TNF-α against all stimuli but only reduced the effects of IL-1β against histamine and forskolin stimulation.Conclusions—IL-1β and TNF-α seem to inhibit parietal cell acid secretion by multiple pathways; the inhibition occurs at postreceptor level and involves pertussis toxin and tyrosine kinase dependent and independent pathways. Mucosal production of cytokines may be important in the regulation of gastric acid secretion.


2002 ◽  
Vol 14 (3) ◽  
pp. 133 ◽  
Author(s):  
Guillermo M. Lanuza ◽  
Patricia E. Saragüeta ◽  
Ursula A. Bussmann ◽  
J. Lino Barañao

Tumour necrosis factor- α (TNF-α ) has been proposed as an intraovarian modulator of granulosa cell function. The effect of TNF-α on DNA synthesis in cultured rat granulosa cells was examined. Tumour necrosis factor-α stimulated thymidine incorporation when added in the presence of transforming growth factor-β (TGF-β). In contrast, the co-mitogenic effect of follicle-stimulating hormone (FSH) and TGF-β was inhibited in a dose-dependent manner by TNF-α . Inhibition of FSH-dependent DNA synthesis by TNF-α was also found when cultures were co-stimulated with activin A. The inhibitory action of TNF-α on FSH-treated cultures was not associated with changes in cell viability. The inhibitory effects of TNF-α could not be solely explained by a decrease in cAMP levels, since TNF-α was also able to inhibit the stimulation by dibutyryl-cAMP and TGF-β on granulosa cell DNA synthesis. These results suggest that TNF-α regulation of granulosa cell growth is elicited either independently or downstream from gonadotrophin-induced cAMP production. The actions of TNF-α could be only partially mimicked by a cell-permeable analogue of ceramide, thus indicating that actions of this cytokine can not be fully ascribed to an activation of sphingomyelinase. Data presented here indicate that, in addition to its previously demonstrated inhibitory effects on gonadotrophin-induced cell differentiation, TNF-α may also exert a marked inhibition on hormonally stimulated immature granulosa cell proliferation. In contrast to this inhibitory action, this cytokine could amplify the mitogenic action of putative intraovarian growth regulators such as TGF-β. These observations add further support to the notion that TNF-α plays a physiological role as a paracrine modulator of follicle development and may be also relevant to the alteration of ovarian function during physiopathological processes.


1995 ◽  
Vol 144 (3) ◽  
pp. 457-462 ◽  
Author(s):  
G Haskó ◽  
I J Elenkov ◽  
V Kvetan ◽  
E S Vizi

Abstract The effect of selective block of α2-adrenoreceptors on plasma levels of tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and corticosterone induced by bacterial lipopolysaccharide (LPS) was investigated in mice using ELISA and RIA. It was found that the LPS-induced TNF-α response was significantly blunted in mice pretreated with CH-38083, a novel and highly selective α2-adrenoreceptor antagonist (the α2/α1 ratio is >2000). In contrast, LPS-induced increases in both corticosterone and IL-6 plasma levels were further increased by CH-38083. Since it has recently been shown that the selective block of α2-adrenoreceptors located on noradrenergic axon terminals resulted in an increase in the release of noradrenaline (NA), both in the central and peripheral nervous systems, and, in our experiments, that propranolol prevented the effect of α2-adrenoreceptor blockade on TNF-α plasma levels induced by LPS, it seems likely that the excessive stimulation by NA of β-adrenoreceptors located on cytokine-secreting immune cells is responsible for this action. Since it is generally accepted that increased production of TNF-α is involved in the pathogenesis of inflammation and endotoxin shock on the one hand, and corticosterone and even IL-6 are known to possess anti-inflammatory properties on the other hand, it is suggested that the selective block of α2-adrenoreceptors might be beneficial in the treatment of inflammation and/or endotoxin shock. Journal of Endocrinology (1995) 144, 457–462


2016 ◽  
Vol 36 (1) ◽  
Author(s):  
Abbas Jawad Al-Shabany ◽  
Alan John Moody ◽  
Andrew David Foey ◽  
Richard Andrew Billington

Bacterial lipopolysaccharide induces changes in intracellular NAD+ levels in a pro-inflammatory, but not an anti-inflammatory, macrophage model that are correlated with the release of the pro-inflammatory cytokine tumour necrosis factor-α (TNF-α).


Sign in / Sign up

Export Citation Format

Share Document