NIES certified reference material for microcystins, hepatotoxic cyclic peptide toxins from cyanobacterial blooms in eutrophic water bodies

2008 ◽  
Vol 391 (6) ◽  
pp. 2005-2010 ◽  
Author(s):  
Tomoharu Sano ◽  
Hiroo Takagi ◽  
Masataka Nishikawa ◽  
Kunimitsu Kaya
Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2467 ◽  
Author(s):  
Manqi Chang ◽  
Sven Teurlincx ◽  
Jan Janse ◽  
Hans Paerl ◽  
Wolf Mooij ◽  
...  

Globally, many shallow lakes have shifted from a clear macrophyte-dominated state to a turbid phytoplankton-dominated state due to eutrophication. Such shifts are often accompanied by toxic cyanobacterial blooms, with specialized traits including buoyancy regulation and nitrogen fixation. Previous work has focused on how these traits contribute to cyanobacterial competitiveness. Yet, little is known on how these traits affect the value of nutrient loading thresholds of shallow lakes. These thresholds are defined as the nutrient loading at which lakes shift water quality state. Here, we used a modelling approach to estimate the effects of traits on nutrient loading thresholds. We incorporated cyanobacterial traits in the process-based ecosystem model PCLake+, known for its ability to determine nutrient loading thresholds. Four scenarios were simulated, including cyanobacteria without traits, with buoyancy regulation, with nitrogen fixation, and with both traits. Nutrient loading thresholds were obtained under N-limited, P-limited, and colimited conditions. Results show that cyanobacterial traits can impede lake restoration actions aimed at removing cyanobacterial blooms via nutrient loading reduction. However, these traits hardly affect the nutrient loading thresholds for clear lakes experiencing eutrophication. Our results provide references for nutrient loading thresholds and draw attention to cyanobacterial traits during the remediation of eutrophic water bodies.


2017 ◽  
Vol 77 (5) ◽  
pp. 1186-1195 ◽  
Author(s):  
Fei Zhong ◽  
Wei Liu ◽  
Mengdan Lv ◽  
Zifa Deng ◽  
Juan Wu ◽  
...  

Abstract Eutrophication often leads to the periodic proliferation of harmful cyanobacterial blooms (HCBs), which threaten the sustainability of freshwater ecosystems and lead to serious environmental, health and economic damage. Hence, it is vitally important to take effective measures to manage HCBs and associated problems. In this study, vertical flow constructed wetlands (CWs) were operated under different hydraulic loading rates (HLRs) to treat a hyper-eutrophic water body with HCBs. Six sampling ports (representing different layers) were evenly distributed along the water flow direction to study the purification processes of CWs. With HLRs ranging from 0.2 m/d to 0.8 m/d, total nitrogen (TN), total phosphorus (TP), COD, total suspended solid (TSS) and Chlorophyll a (Chl.a) were efficiently treated by CWs, and they were mainly removed at the second layer of CWs. The concentrations of two cyanobacterial metabolites (geosmin and β-cyclocitral) in the effluent were mostly below their odorous threshold concentrations. As the HLRs increased, the treatment efficiencies of the CWs decreased gradually. There was no removal of TP, Chl.a, geosmin, or β-cyclocitral at an HLR of 1.0 m/d. Under suitable HLRs, this type of CW could provide a promising way to control HCBs and associated odorous problems in hyper-eutrophic water bodies.


2019 ◽  
Vol 55 (5) ◽  
pp. 100-106
Author(s):  
Ye. N. Volkova ◽  
V. V. Belyayev ◽  
S. P. Prishlyak ◽  
A. A. Parkhomenko

2011 ◽  
Vol 400 (3) ◽  
pp. 821-833 ◽  
Author(s):  
Pearse McCarron ◽  
Håkan Emteborg ◽  
Cíara Nulty ◽  
Thomas Rundberget ◽  
Jared I. Loader ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4370
Author(s):  
Liping Fang ◽  
Linyan Huang ◽  
Gang Yang ◽  
Yang Jiang ◽  
Haiping Liu ◽  
...  

Water matrix certified reference material (MCRM) of volatile organic compounds (VOCs) is used to provide quality assurance and quality control (QA/QC) during the analysis of VOCs in water. In this research, a water MCRM of 28 VOCs was developed using a “reconstitution” approach by adding VOCs spiking, methanol solution into pure water immediately prior to analysis. The VOCs spiking solution was prepared gravimetrically by dividing 28 VOCs into seven groups, then based on ISO Guide 35, using gas chromatography-mass spectrometry (GC-MS) to investigate the homogeneity and long-term stability. The studies of homogeneity and long-term stability indicated that the batch of VOCs spiking solution was homogeneous and stable at room temperature for at least 15 months. Moreover, the water MCRM of 28 VOCs was certified by a network of nine competent laboratories, and the certified values and expanded uncertainties of 28 VOCs ranged from 6.2 to 17 μg/L and 0.5 to 5.3 μg/L, respectively.


Biopolymers ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 659-664 ◽  
Author(s):  
Jonathan D. Walton ◽  
Heather E. Hallen-Adams ◽  
Hong Luo

MAPAN ◽  
2017 ◽  
Vol 32 (3) ◽  
pp. 215-222
Author(s):  
H. E. Ahmed ◽  
Mohamed Hassan ◽  
Mohamed Nour ◽  
A. B. Shehata ◽  
Maher Helmy

Sign in / Sign up

Export Citation Format

Share Document