An integrated microfluidic device for the high-throughput screening of microalgal cell culture conditions that induce high growth rate and lipid content

2013 ◽  
Vol 405 (29) ◽  
pp. 9365-9374 ◽  
Author(s):  
Sunwoong Bae ◽  
Chul Woong Kim ◽  
Jong Seob Choi ◽  
Ji-Won Yang ◽  
Tae Seok Seo
2015 ◽  
Vol 821-823 ◽  
pp. 133-136 ◽  
Author(s):  
Takanori Tanaka ◽  
Naoyuki Kawabata ◽  
Yoichiro Mitani ◽  
Masashi Sakai ◽  
Nobuyuki Tomita ◽  
...  

The reduction of the growth pressure was demonstrated to have the same effect as the addition of chloride-containing gas on preventing the Si nucleation and the epitaxy with high growth rate (>50 μm/h) was achieved by using the decreasing pressure condition in a horizontal CVD reactor without chloride-containing gas. The quality of a 30-μm-thick epilayer grown with 40 μm/h was also investigated. Downfall and triangle defect density in the layer was as low as 0.16 /cm2, indicating that a high quality epitaxial wafer can be easily obtained under the condition with high throughput in the sinple CVD system.


2013 ◽  
Vol 127 ◽  
pp. 482-488 ◽  
Author(s):  
Chan Yoo ◽  
Gang-Guk Choi ◽  
Sun-Chang Kim ◽  
Hee-Mock Oh

2013 ◽  
Vol 10 (78) ◽  
pp. 20120753 ◽  
Author(s):  
H. V. Unadkat ◽  
R. R. Rewagad ◽  
M. Hulsman ◽  
G. F. B. Hulshof ◽  
R. K. Truckenmüller ◽  
...  

The field of biomaterials research is witnessing a steady rise in high-throughput screening approaches, comprising arrays of materials of different physico-chemical composition in a chip format. Even though the cell arrays provide many benefits in terms of throughput, they also bring new challenges. One of them is the establishment of robust homogeneous cell seeding techniques and strong control over cell culture, especially for long time periods. To meet these demands, seeding cells with low variation per tester area is required, in addition to robust cell culture parameters. In this study, we describe the development of a modular chip carrier which represents an important step in standardizing cell seeding and cell culture conditions in array formats. Our carrier allows flexible and controlled cell seeding and subsequent cell culture using dynamic perfusion. To demonstrate the application of our device, we successfully cultured and evaluated C2C12 premyoblast cell viability under dynamic conditions for a period of 5 days using an automated pipeline for image acquisition and analysis. In addition, using computational fluid dynamics, lactate and BMP-2 as model molecules, we estimated that there is good exchange of nutrients and metabolites with the flowing medium, whereas no cross-talk between adjacent TestUnits should be expected. Moreover, the shear stresses to the cells can be tailored uniformly over the entire chip area. Based on these findings, we believe our chip carrier may be a versatile tool for high-throughput cell experiments in biomaterials sciences.


2013 ◽  
Vol 740-742 ◽  
pp. 323-326
Author(s):  
Kassem Alassaad ◽  
François Cauwet ◽  
Davy Carole ◽  
Véronique Soulière ◽  
Gabriel Ferro

Abstract. In this paper, conditions for obtaining high growth rate during epitaxial growth of SiC by vapor-liquid-solid mechanism are investigated. The alloys studied were Ge-Si, Al-Si and Al-Ge-Si with various compositions. Temperature was varied between 1100 and 1300°C and the carbon precursor was either propane or methane. The variation of layers thickness was studied at low and high precursor partial pressure. It was found that growth rates obtained with both methane and propane are rather similar at low precursor partial pressures. However, when using Ge based melts, the use of high propane flux leads to the formation of a SiC crust on top of the liquid, which limits the growth by VLS. But when methane is used, even at extremely high flux (up to 100 sccm), no crust could be detected on top of the liquid while the deposit thickness was still rather small (between 1.12 μm and 1.30 μm). When using Al-Si alloys, no crust was also observed under 100 sccm methane but the thickness was as high as 11.5 µm after 30 min growth. It is proposed that the upper limitation of VLS growth rate depends mainly on C solubility of the liquid phase.


2021 ◽  
Vol 1885 (3) ◽  
pp. 032004
Author(s):  
Qichao Pan ◽  
Zuwei Zhang ◽  
Yaqiong Zhang ◽  
Yaopeng Zhang ◽  
Bo Zhu

1989 ◽  
Vol 25 (9) ◽  
pp. 806-812 ◽  
Author(s):  
Tarek Bisat ◽  
Terry R. Brown ◽  
Claude J. Migeon ◽  
Gary D. Berkovitz

Sign in / Sign up

Export Citation Format

Share Document