DI-ICR-FT-MS-based high-throughput deep metabotyping: a case study of the Caenorhabditis elegans–Pseudomonas aeruginosa infection model

2014 ◽  
Vol 407 (4) ◽  
pp. 1059-1073 ◽  
Author(s):  
Michael Witting ◽  
Marianna Lucio ◽  
Dimitrios Tziotis ◽  
Brigitte Wägele ◽  
Karsten Suhre ◽  
...  
2017 ◽  
Vol 8 ◽  
Author(s):  
Siti N. Fatin ◽  
Tan Boon-Khai ◽  
Alexander Chong Shu-Chien ◽  
Melati Khairuddean ◽  
Amirul Al-Ashraf Abdullah

2014 ◽  
Author(s):  
Shawn Lewenza ◽  
Laetitia Charron-Mazenod ◽  
Lauriane Giroux ◽  
Alexandra D Zamponi

Caenorhabditis elegans is commonly used as an infection model for pathogenesis studies in Pseudomonas aeruginosa. While the standard virulence assays rely on the slow and fast killing or paralysis of nematodes, here we developed a behaviour assay to monitor the preferred bacterial food sources of C. elegans. The type III secretion system is a well-conserved virulence trait that is not required for slow or fast killing of C. elegans. However, ΔexsE mutants that are competent for hypersecretion of ExoS, ExoT and ExoY effectors were avoided as food sources in binary assays. Conversely, mutants lacking the secretion machinery or type III effectors were preferred food sources for PAO1. In binary feeding assays, both food sources were ingested and observed in the gastrointestinal tract, but non-preferred food sources were ultimately avoided. Next we developed a high throughput feeding behaviour assay to test a library of 2370 transposon mutants in order to identify preferred food sources. After primary and secondary screens, 37 mutants were identified as preferred food sources, which included mutations in many known virulence genes and that showed reduced virulence in the slow killing assay. We propose that C. elegans feeding behaviour can be used as a sensitive indicator of virulence for bacterial strains that have moderate worm killing activity.


2020 ◽  
Author(s):  
Lokender Kumar ◽  
Nathanael Brenner ◽  
John Brice ◽  
Judith Klein-Seetharaman ◽  
Susanta K. Sarkar

ABSTRACTPseudomonas aeruginosa utilizes a chemical social networking system referred to as quorum sensing (QS) to strategically co-ordinate the expression of virulence factors and biofilm formation. Virulence attributes damage the host cells, impair the host immune system, and protect bacterial cells from antibiotic attack. Thus, anti-QS agents may act as novel anti-infective therapeutics to treat P. aeruginosa infections. The present study was performed to evaluate the anti-QS, anti-biofilm, and anti-virulence activity of β-lactam antibiotics (carbapenems and cephalosporins) against P. aeruginosa. The anti-QS activity was quantified using Chromobacterium violaceum CV026 as a QS reporter strain. Our results showed that cephalosporins including cefepime (CP), ceftazidime (CF), and ceftriaxone (CT) exhibited potent anti-QS and anti-virulence activities against P. aeruginosa PAO1. These antibiotics significantly impaired motility phenotypes, decreased pyocyanin production, and reduced the biofilm formation by P. aeruginosa PAO1. In the present study, we studied isogenic QS mutants of PAO1: ΔLasR, ΔRhlR, ΔPqsA, and ΔPqsR and found that the levels of virulence factors of antibiotic-treated PAO1 were comparable to QS mutant strains. Molecular docking predicted high binding affinities of cephalosporins for the ligand-binding pocket of QS receptors (CviR, LasR, and PqsR). In addition, our results showed that the anti-microbial activity of aminoglycosides increased in the presence of sub-inhibitory concentrations (sub-MICs) of CP against P. aeruginosa PAO1. Further, utilizing Caenorhabditis elegans as an animal model for the in vivo anti-virulence effects of antibiotics, cephalosporins showed a significant increase in C. elegans survival by suppressing virulence factor production in P. aeruginosa. Thus, our results indicate that cephalosporins might provide a viable anti-virulence therapy in the treatment of infections caused by multi-drug resistant P. aeruginosa.


2014 ◽  
Author(s):  
Shawn Lewenza ◽  
Laetitia Charron-Mazenod ◽  
Lauriane Giroux ◽  
Alexandra D Zamponi

Caenorhabditis elegans is commonly used as an infection model for pathogenesis studies in Pseudomonas aeruginosa. While the standard virulence assays rely on the slow and fast killing or paralysis of nematodes, here we developed a behaviour assay to monitor the preferred bacterial food sources of C. elegans. The type III secretion system is a well-conserved virulence trait that is not required for slow or fast killing of C. elegans. However, ΔexsE mutants that are competent for hypersecretion of ExoS, ExoT and ExoY effectors were avoided as food sources in binary assays. Conversely, mutants lacking the secretion machinery or type III effectors were preferred food sources for PAO1. In binary feeding assays, both food sources were ingested and observed in the gastrointestinal tract, but non-preferred food sources were ultimately avoided. Next we developed a high throughput feeding behaviour assay to test a library of 2370 transposon mutants in order to identify preferred food sources. After primary and secondary screens, 37 mutants were identified as preferred food sources, which included mutations in many known virulence genes and that showed reduced virulence in the slow killing assay. We propose that C. elegans feeding behaviour can be used as a sensitive indicator of virulence for bacterial strains that have moderate worm killing activity.


mSphere ◽  
2016 ◽  
Vol 1 (4) ◽  
Author(s):  
Daniel R. Kirienko ◽  
Alexey V. Revtovich ◽  
Natalia V. Kirienko

ABSTRACT Despite intense research effort from scientists and the advent of the molecular age of biomedical research, many of the mechanisms that underlie pathogenesis are still understood poorly, if at all. The opportunistic human pathogen Pseudomonas aeruginosa causes a variety of soft tissue infections and is responsible for over 50,000 hospital-acquired infections per year. In addition, P. aeruginosa exhibits a striking degree of innate and acquired antimicrobial resistance, complicating treatment. It is increasingly important to understand P. aeruginosa virulence. In an effort to gain this information in an unbiased fashion, we used a high-throughput phenotypic screen to identify small molecules that disrupted bacterial pathogenesis and increased host survival using the model nematode Caenorhabditis elegans. This method led to the unexpected discovery that addition of a modified nucleotide, 5-fluorouridine, disrupted bacterial RNA metabolism and inhibited synthesis of pyoverdine, a critical toxin. Our results demonstrate that this compound specifically functions as an antivirulent. Pseudomonas aeruginosa is an opportunistic pathogen that causes severe health problems. Despite intensive investigation, many aspects of microbial virulence remain poorly understood. We used a high-throughput, high-content, whole-organism, phenotypic screen to identify small molecules that inhibit P. aeruginosa virulence in Caenorhabditis elegans. Approximately half of the hits were known antimicrobials. A large number of hits were nonantimicrobial bioactive compounds, including the cancer chemotherapeutic 5-fluorouracil. We determined that 5-fluorouracil both transiently inhibits bacterial growth and reduces pyoverdine biosynthesis. Pyoverdine is a siderophore that regulates the expression of several virulence determinants and is critical for pathogenesis in mammals. We show that 5-fluorouridine, a downstream metabolite of 5-fluorouracil, is responsible for inhibiting pyoverdine biosynthesis. We also show that 5-fluorouridine, in contrast to 5-fluorouracil, is a genuine antivirulence compound, with no bacteriostatic or bactericidal activity. To our knowledge, this is the first report utilizing a whole-organism screen to identify novel compounds with antivirulent properties effective against P. aeruginosa. IMPORTANCE Despite intense research effort from scientists and the advent of the molecular age of biomedical research, many of the mechanisms that underlie pathogenesis are still understood poorly, if at all. The opportunistic human pathogen Pseudomonas aeruginosa causes a variety of soft tissue infections and is responsible for over 50,000 hospital-acquired infections per year. In addition, P. aeruginosa exhibits a striking degree of innate and acquired antimicrobial resistance, complicating treatment. It is increasingly important to understand P. aeruginosa virulence. In an effort to gain this information in an unbiased fashion, we used a high-throughput phenotypic screen to identify small molecules that disrupted bacterial pathogenesis and increased host survival using the model nematode Caenorhabditis elegans. This method led to the unexpected discovery that addition of a modified nucleotide, 5-fluorouridine, disrupted bacterial RNA metabolism and inhibited synthesis of pyoverdine, a critical toxin. Our results demonstrate that this compound specifically functions as an antivirulent.


2012 ◽  
Vol 8 (7) ◽  
pp. e1002813 ◽  
Author(s):  
Rhonda L. Feinbaum ◽  
Jonathan M. Urbach ◽  
Nicole T. Liberati ◽  
Slavica Djonovic ◽  
Allison Adonizio ◽  
...  

2009 ◽  
Vol 53 (11) ◽  
pp. 4891-4897 ◽  
Author(s):  
Evelina Papaioannou ◽  
Mariana Wahjudi ◽  
Pol Nadal-Jimenez ◽  
Gudrun Koch ◽  
Rita Setroikromo ◽  
...  

ABSTRACT The Pseudomonas aeruginosa PAO1 gene pvdQ encodes an acyl-homoserine lactone (AHL) acylase capable of degrading N-(3-oxododecanoyl)-l-homoserine lactone by cleaving the AHL amide. PvdQ has been proven to function as a quorum quencher in vitro in a number of phenotypic assays. To address the question of whether PvdQ also shows quorum-quenching properties in vivo, an infection model based on the nematode Caenorhabditis elegans was explored. In a fast-acting paralysis assay, strain PAO1(pMEpvdQ), which overproduces PvdQ, was shown to be less virulent than the wild-type strain. More than 75% of the nematodes exposed to PAO1(pMEpvdQ) survived and continued to grow when using this strain as a food source. Interestingly, in a slow-killing assay monitoring the survival of the nematodes throughout a 4-day course, strain PAO1-ΔpvdQ was shown to be more virulent than the wild-type strain, confirming the role of PvdQ as a virulence-reducing agent. It was observed that larval stage 1 (L1) to L3-stage larvae benefit much more from protection by PvdQ than L4 worms. Finally, purified PvdQ protein was added to C. elegans worms infected with wild-type PAO1, and this resulted in reduced pathogenicity and increased the life span of the nematodes. From our observations we can conclude that PvdQ might be a strong candidate for antibacterial therapy against Pseudomonas infections.


2015 ◽  
Vol 22 (4) ◽  
pp. 483-491 ◽  
Author(s):  
Jie Zhu ◽  
Xiaoqing Cai ◽  
Tyler L. Harris ◽  
Major Gooyit ◽  
Malcolm Wood ◽  
...  

2017 ◽  
Author(s):  
Sneha Garge ◽  
Sheyda Azimi ◽  
Stephen P. Diggle

AbstractHere we highlight the development of a simple and high throughput mung bean model to study virulence in the opportunistic pathogen Pseudomonas aeruginosa. The model is easy to setup and infection and virulence can be monitored for up to 10 days. In a first test of the model, we found that mung bean seedlings infected with PAO1 showed poor development of roots and high mortality rates compared to un-infected controls. We also found that a quorum sensing (QS) mutant was significantly less virulent when compared with the PAO1 wild type. Our work introduces a new tool for studying virulence in P. aeruginosa, that will allow for high throughput virulence studies of mutants, and for testing the in vivo efficacy of new therapies at a time when new antimicrobial drugs are desperately needed.


1993 ◽  
Vol 39 (12) ◽  
pp. 1127-1134 ◽  
Author(s):  
David A. Hart ◽  
Francis Green ◽  
Paul Whidden ◽  
Jack Henkin ◽  
Donald E. Woods

The effect of recombinant human urokinase (rh-UK) in a rat model of chronic Pseudomonas aeruginosa pulmonary infection was studied. Efficacy was assessed by lung histology and quantitative bacteriology. Male Sprague–Dawley rats received 1 × 104 or 1 × 105P. aeruginosa encapsulated in agar beads via the intratracheal route on day 1. Intratracheal administration of up to 12 500 units of rh-UK on day 21 led to a dose-dependent disappearance of viable organisms from the lungs by day 24 in rats receiving 104 organisms. In slightly longer term infections (30 days), rh-UK was still effective in facilitating the disappearance of the organisms from the lungs of most of the treated animals. rh-UK was effective in eliminating organisms when animals were infected with 104, but not 105 bacteria. In vitro analysis revealed that rh-UK was not directly toxic for the organisms. Histologically, lungs from short-term infected control animals exhibited acute inflammation, inflammatory cell infiltrates, and fibrin deposition. Histology of lungs from UK-treated, short-term infected rats revealed decreased airway inflammation and cellular infiltration compared with infected controls. Lungs from infected animals treated with 12 500 units of rh-UK were histologically indistinguishable from the lungs of uninfected control animals, except for the foreign body reaction. These results indicate that exogenous rh-UK may be efficacious in the treatment of pulmonary inflammation accompanying exposure to Gram-negative bacteria such as P. aeruginosa.Key words: chronic pulmonary infection, Pseudomonas aeruginosa infection, fibrinolysis, urokinase.


Sign in / Sign up

Export Citation Format

Share Document