scholarly journals Effects of arm weight support on neuromuscular activation during reaching in chronic stroke patients

2019 ◽  
Vol 237 (12) ◽  
pp. 3391-3408 ◽  
Author(s):  
Keith D. Runnalls ◽  
Pablo Ortega-Auriol ◽  
Angus J. C. McMorland ◽  
Greg Anson ◽  
Winston D. Byblow
2019 ◽  
Author(s):  
Keith D Runnalls ◽  
Pablo Ortega-Auriol ◽  
Angus J C McMorland ◽  
Greg Anson ◽  
Winston D Byblow

AbstractTo better understand how arm weight support (WS) can be used to alleviate upper limb impairment after stroke, we investigated the effects of WS on muscle activity, muscle synergy expression, and corticomotor excitability (CME) in 13 chronic stroke patients and 6 age-similar healthy controls. For patients, lesion location and corticospinal tract integrity were assessed using magnetic resonance imaging. Upper limb impairment was assessed using the Fugl-Meyer upper extremity assessment with patients categorised as either mild or moderate-severe. Three levels of WS were examined: low=0, medium=50 and high=100 % of full support. Surface EMG was recorded from 8 upper limb muscles, and muscle synergies were decomposed using non-negative matrix factorisation from data obtained during reaching movements to an array of 14 targets using the paretic or dominant arm. Interactions between impairment level and WS were found for the number of targets hit, and EMG measures. Overall, greater WS resulted in lower EMG levels, although the degree of modulation between WS levels was less for patients with moderate-severe compared to mild impairment. Healthy controls expressed more synergies than patients with moderate-severe impairment. Healthy controls and patients with mild impairment showed more synergies with high compared to low weight support. Transcranial magnetic stimulation was used to elicit motor-evoked potentials (MEPs) to which stimulus-response curves were fitted as a measure of corticomotor excitability (CME). The effect of WS on CME varied between muscles and across impairment level. These preliminary findings demonstrate that WS has direct and indirect effects on muscle activity, synergies, and CME and warrants further study in order to reduce upper limb impairment after stroke.


Author(s):  
Asmaa Sabbah ◽  
Sherine El Mously ◽  
Hanan Helmy Mohamed Elgendy ◽  
Mona Adel Abd Eltawab Farag ◽  
Abeer Abo Bakr Elwishy

Author(s):  
Reem M. Alwhaibi ◽  
Noha F. Mahmoud ◽  
Mye A. Basheer ◽  
Hoda M. Zakaria ◽  
Mahmoud Y. Elzanaty ◽  
...  

Recovery of lower extremity (LE) function in chronic stroke patients is considered a barrier to community reintegration. An adequate training program is required to improve neural and functional performance of the affected LE in chronic stroke patients. The current study aimed to evaluate the effect of somatosensory rehabilitation on neural and functional recovery of LE in stroke patients. Thirty male and female patients were recruited and randomized to equal groups: control group (GI) and intervention group (GII). All patients were matched for age, duration of stroke, and degree of motor impairment of the affected LE. Both groups received standard program of physical therapy in addition to somatosensory rehabilitation for GII. The duration of treatment for both groups was eight consecutive weeks. Outcome measures used were Functional Independent Measure (FIM) and Quantitative Electroencephalography (QEEG), obtained pre- and post-treatment. A significant improvement was found in the FIM scores of the intervention group (GII), as compared to the control group (GI) (p < 0.001). Additionally, QEEG scores improved within the intervention group post-treatment. QEEG scores did not improve within the control group post-treatment, except for “Cz-AR”, compared to pretreatment, with no significant difference between groups. Adding somatosensory training to standard physical therapy program results in better improvement of neuromuscular control of LE function in chronic stroke patients.


Sign in / Sign up

Export Citation Format

Share Document