scholarly journals Disuse Osteoporosis: Clinical and Mechanistic Insights

Author(s):  
Tim Rolvien ◽  
Michael Amling

AbstractDisuse osteoporosis describes a state of bone loss due to local skeletal unloading or systemic immobilization. This review will discuss advances in the field that have shed light on clinical observations, mechanistic insights and options for the treatment of disuse osteoporosis. Clinical settings of disuse osteoporosis include spinal cord injury, other neurological and neuromuscular disorders, immobilization after fractures and bed rest (real or modeled). Furthermore, spaceflight-induced bone loss represents a well-known adaptive process to microgravity. Clinical studies have outlined that immobilization leads to immediate bone loss in both the trabecular and cortical compartments accompanied by relatively increased bone resorption and decreased bone formation. The fact that the low bone formation state has been linked to high levels of the osteocyte-secreted protein sclerostin is one of the many findings that has brought matrix-embedded, mechanosensitive osteocytes into focus in the search for mechanistic principles. Previous basic research has primarily involved rodent models based on tail suspension, spaceflight and other immobilization methods, which have underlined the importance of osteocytes in the pathogenesis of disuse osteoporosis. Furthermore, molecular-based in vitro and in vivo approaches have revealed that osteocytes sense mechanical loading through mechanosensors that translate extracellular mechanical signals to intracellular biochemical signals and regulate gene expression. Osteocytic mechanosensors include the osteocyte cytoskeleton and dendritic processes within the lacuno-canalicular system (LCS), ion channels (e.g., Piezo1), extracellular matrix, primary cilia, focal adhesions (integrin-based) and hemichannels and gap junctions (connexin-based). Overall, disuse represents one of the major factors contributing to immediate bone loss and osteoporosis, and alterations in osteocytic pathways appear crucial to the bone loss associated with unloading.

2019 ◽  
Vol 3 (s1) ◽  
pp. 24-24
Author(s):  
Rubens Sautchuk ◽  
Brianna H. Shares ◽  
Roman A. Eliseev

OBJECTIVES/SPECIFIC AIMS: The study aims to further investigate how cyclophilin D (CypD), the key mPTP opening regulator, affects BMSCs fate and to determine potential regulatory mechanisms involved in CypD regulation during osteogenesis. METHODS/STUDY POPULATION: We evaluated CypD mRNA expression in mouse BMSCs and in osteogenic-like (OL) cells during the course of OB differentiation. CypD protein level was also probed. Moreover, BMSCs had their mPTP activity recorded during osteoinduction. We further analyzed the effect of CypD genetic deletion on osteogenesis in vitro and in vivo. For our in vivo model, we performed the ectopic bone formation assay to asses differences in ossicle formation when CypD KO BMSCs were transplanted compared to wild type littermate BMSCs. In our in vitro model, we transfected OL cells with either CypD gain of function or CypD loss of function vector and measured their osteogenic differentiation potential. Additionally, we treated BMSCs with CypD inhibitor and compare to non-treated BMSCs for mineralization level. To determine potential regulatory mechanisms involved in CypD regulation, we analyzed the CypD gene (Ppif) promoter for potential transcription factor (TF) binding sites and found multiple Smad-binding elements within this promoter. Smads (Smad1, 5, 8) are TFs downstream from Bone Morphogenic Protein (BMP) signaling pathway that transmit cell differentiation signaling, and exert either activating or inhibitory effects on a variety of genes. We also transfect OL cells with Smad1 vector and analyzed for CypD mRNA levels. RESULTS/ANTICIPATED RESULTS: - Our data showed that CypD mRNA levels decreased in both primary cells and OL cells at day 7 and day 14 in osteogenic media. - Osteogenic induction also decreased mPTP activity. - In vivo ectopic bone formation assay showed increased ossicle fo DISCUSSION/SIGNIFICANCE OF IMPACT: Our data suggest that downregulation of CypD increases OB differentiation due to improved OxPhos activity led by mPTP closure. Our results corroborate reports of CypD downregulation and mPTP closure during neuronal differentiation in developing rat brains as well as in cardiomyocyte differentiation in developing mouse hearts. Our studies also suggest a yet unknown mechanism linking differentiation signaling with mitochondrial function – BMP/Smad mediated downregulation of CypD transcription. As initially mentioned, in a previous study, our lab showed that CypD KO mice present higher mitochondrial function and osteogenicity in aged BMSCs and less osteoporosis burden. Taken together, these results suggest that CypD can be a potential target to prevent bone loss in aging.


2013 ◽  
Vol 2013 ◽  
pp. 1-32 ◽  
Author(s):  
Jun Li ◽  
Guilherme Lepski

Cell transplantation, as a therapeutic intervention for spinal cord injury (SCI), has been extensively studied by researchers in recent years. A number of different kinds of stem cells, neural progenitors, and glial cells have been tested in basic research, and most have been excluded from clinical studies because of a variety of reasons, including safety and efficacy. The signaling pathways, protein interactions, cellular behavior, and the differentiated fates of experimental cells have been studiedin vitroin detail. Furthermore, the survival, proliferation, differentiation, and effects on promoting functional recovery of transplanted cells have also been examined in different animal SCI models. However, despite significant progress, a “bench to bedside” gap still exists. In this paper, we comprehensively cover publications in the field from the last years. The most commonly utilized cell lineages were covered in this paper and specific areas covered include survival of grafted cells, axonal regeneration and remyelination, sensory and motor functional recovery, and electrophysiological improvements. Finally we also review the literature on thein vivotracking techniques for transplanted cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Ma ◽  
Juan Gao ◽  
Jun Liang ◽  
Weixiang Dai ◽  
Zhenfei Wang ◽  
...  

Abstract Background Senile osteoporosis can cause bone fragility and increased risk for fractures and has been one of the most prevalent and severe diseases affecting the elderly population worldwidely. The underlying mechanisms are currently intensive areas of investigation. In age-related bone loss, decreased bone formation overweighs increased bone resorption. The molecular mechanisms underlying defective bone formation in age-related bone loss are not completely understood. In particular, the specific role of histone acetylation in age-related bone loss has not been examined thoroughly. Methods We employed 6- and 18-month-old mice to investigate the mechanisms of defective bone formation in age-related bone loss. Bone marrow stromal cells (BMSCs) were induced to undergo in vitro osteogenic differentiation. Chromatin immunoprecipitation (ChIP) was used to investigate the binding of histone deacetylases (HDACs) on Runx2 promoter in BMSCs. Luciferase reporter and transient transfection assay were employed to study Runx2 gene expression modulation by HDAC and androgen receptor (AR). siRNA and HDAC6 inhibitor, Tubastatin A, were used to inhibit HDAC6 in vitro. And systemic administration of Tubastatin A was used to block HDAC6 in vivo. Results Age-related trabecular bone loss was observed in 18-month-old mice compared with 6-month-old mice. In vitro osteogenic differentiation potential of BMSCs from 18-month-old mice was weaker than 6-month-old mice, in which there was Runx2 expression inactivation in BMSCs of 18-month-old mice compared with 6-month-old mice, which was attributable to HDAC6-mediated histone hypoacetylation in Runx2 promoter. There was competitive binding of HDAC6 and AR on Runx2 promoter to modulate Runx2 expression in BMSCs. More importantly, through siRNA- or specific inhibitor-mediated HDAC6 inhibition, we could activate Runx2 expression, rescue in vitro osteogenesis potential of BMSCs, and alleviate in vivo age-related bone loss of mice. Conclusion HDAC6 accumulation and histone hypoacetylation on Runx2 promoter contributed to the attenuation of in vitro osteogenic differentiation potential of BMSCs from aged mice. Through HDAC6 inhibition, we could activate Runx2 expression and osteogenic differentiation potential of BMSCs from aged mice and alleviate the age-related bone loss of aged mice. Our study will benefit not only for understanding the age-related bone loss, but also for finding new therapies to treat senile osteoporosis.


Bone Research ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Akiko Suzuki ◽  
Kenichi Ogata ◽  
Hiroki Yoshioka ◽  
Junbo Shim ◽  
Christopher A. Wassif ◽  
...  

AbstractHuman linkage studies suggest that craniofacial deformities result from either genetic mutations related to cholesterol metabolism or high-cholesterol maternal diets. However, little is known about the precise roles of intracellular cholesterol metabolism in the development of craniofacial bones, the majority of which are formed through intramembranous ossification. Here, we show that an altered cholesterol metabolic status results in abnormal osteogenesis through dysregulation of primary cilium formation during bone formation. We found that cholesterol metabolic aberrations, induced through disruption of either Dhcr7 (which encodes an enzyme involved in cholesterol synthesis) or Insig1 and Insig2 (which provide a negative feedback mechanism for cholesterol biosynthesis), result in osteoblast differentiation abnormalities. Notably, the primary cilia responsible for sensing extracellular cues were altered in number and length through dysregulated ciliary vesicle fusion in Dhcr7 and Insig1/2 mutant osteoblasts. As a consequence, WNT/β-catenin and hedgehog signaling activities were altered through dysregulated primary cilium formation. Strikingly, the normalization of defective cholesterol metabolism by simvastatin, a drug used in the treatment of cholesterol metabolic aberrations, rescued the abnormalities in both ciliogenesis and osteogenesis in vitro and in vivo. Thus, our results indicate that proper intracellular cholesterol status is crucial for primary cilium formation during skull formation and homeostasis.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
So Ah Kim ◽  
Ae Sin Lee ◽  
Haeng Jeon Hur ◽  
Sang Hee Lee ◽  
Mi Jeong Sung

Osteoporosis is characterized by decreased bone mass and bone microarchitectural failure, leading to an enhanced risk of bone fractures. Chrysanthemum coronarium L. (CC) is a natural plant with powerful antioxidant activity. This study investigated the antiosteoporotic effects of CC extracts in in vitro cell cultures and in vivo bone loss animal models. CC stimulated osteoblast differentiation and mineralized bone formation by osteoblasts by increasing the expression of bone formation markers (alkaline phosphatase, osteoprotegerin, and osteoprotegerin/receptor activator nuclear factor-κB ligand ratio) in the murine preosteoblastic cell line MC3T3-E1. Additionally, CC was found to inhibit osteoclast differentiation by downregulating bone resorption markers (tartrate-resistant acid phosphatase, cathepsin K, dendritic cell-specific transmembrane protein, and calcitonin receptor) in the murine macrophage-like cell line RAW264.7. CC prevented ovariectomy-induced bone loss, preserved trabecular microarchitecture, and improved serum bone turnover markers in an osteoporotic mouse model. These findings suggest that CC extract may be considered as a natural therapeutic or preventive agent for osteoporotic bone loss.


Endocrinology ◽  
2011 ◽  
Vol 152 (6) ◽  
pp. 2141-2149 ◽  
Author(s):  
Antonia Sophocleous ◽  
Euphemie Landao-Bassonga ◽  
Robert J. van‘t Hof ◽  
Aymen I. Idris ◽  
Stuart H. Ralston

The type 2 cannabinoid receptor (CB2) has been reported to regulate bone mass and bone turnover but the mechanisms responsible are incompletely understood. In this study we investigated the role that the CB2 pathway plays in bone metabolism using a combination of genetic and pharmacological approaches. Bone mass and turnover were normal in young mice with targeted inactivation of CB2 receptor (CB2−/−), but by 12 months of age, they had developed high-turnover osteoporosis with relative uncoupling of bone resorption from bone formation. Primary osteoblasts from CB2−/− mice had a reduced capacity to form bone nodules in vitro when compared with cells from wild-type littermates and also had impaired PTH-induced alkaline phosphatase (ALP) activity. The CB2-selective agonist HU308 stimulated bone nodule formation in wild-type osteoblasts but had no effect in CB2−/− osteoblasts. Further studies in MC3T3-E1 osteoblast like cells showed that HU308 promoted cell migration and activated ERK phosphorylation, and these effects were blocked by the CB2 selective inverse agonist AM630. Finally, HU308 partially protected against ovariectomy induced bone loss in wild-type mice in vivo, primarily by stimulating bone formation, whereas no protective effects were observed in ovariectomized CB2−/− mice. These studies indicate that the CB2 regulates osteoblast differentiation in vitro and bone formation in vivo.


2010 ◽  
Vol 69 (12) ◽  
pp. 2152-2159 ◽  
Author(s):  
Gisela Ruiz Heiland ◽  
Karin Zwerina ◽  
Wolfgang Baum ◽  
Trayana Kireva ◽  
Jörg H Distler ◽  
...  

IntroductionInflammation is a major risk factor for systemic bone loss. Proinflammatory cytokines like tumour necrosis factor (TNF) affect bone homeostasis and induce bone loss. It was hypothesised that impaired bone formation is a key component in inflammatory bone loss and that Dkk-1, a Wnt antagonist, is a strong inhibitor of osteoblast-mediated bone formation.MethodsTNF transgenic (hTNFtg) mice were treated with neutralising antibodies against TNF, Dkk-1 or a combination of both agents. Systemic bone architecture was analysed by bone histomorphometry. The expression of β-catenin, osteoprotegerin and osteocalcin was analysed. In vitro, primary osteoblasts were stimulated with TNF and analysed for their metabolic activity and expression of Dkk-1 and sclerostin. Sclerostin expression and osteocyte death upon Dkk-1 blockade were analysed in vivo.ResultsNeutralisation of Dkk-1 completely protected hTNFtg mice from inflammatory bone loss by preventing TNF-mediated impaired osteoblast function and enhanced osteoclast activity. These findings were accompanied by enhanced skeletal expression of β-catenin, osteocalcin and osteoprotegerin. In vitro, TNF rapidly increased Dkk-1 expression in primary osteoblasts and effectively blocked osteoblast differentiation. Moreover, blockade of Dkk-1 not only rescued impaired osteoblastogenesis but also neutralised TNF-mediated sclerostin expression in fully differentiated osteoblasts in vitro and in vivo.ConclusionsThese findings indicate that low bone formation and expression of Dkk-1 trigger inflammatory bone loss. Dkk-1 blocks osteoblast differentiation, induces sclerostin expression and leads to osteocyte death. Inhibition of Dkk-1 may thus be considered as a potent strategy to protect bone from inflammatory damage.


2019 ◽  
Author(s):  
Philippa A Hulley ◽  
Ioanna Papadimitriou-Olivgeri ◽  
Helen J Knowles

AbstractThe link between bone and blood vessels is regulated by hypoxia and the hypoxia-inducible transcription factor, HIF, which drives both osteogenesis and angiogenesis. The recent clinical approval of PHD enzyme inhibitors, which stabilise HIF protein, introduces the potential for a new clinical strategy to treat osteolytic conditions such as osteoporosis, osteonecrosis and skeletal fracture and non-union. However, bone-resorbing osteoclasts also play a central role in bone remodelling and pathological osteolysis and HIF promotes osteoclast activation and bone loss in vitro. It is therefore likely that the final outcome of PHD enzyme inhibition in vivo would be mediated by a balance between increased bone formation and increased bone resorption. It is essential that we improve our understanding of the effects of HIF on osteoclast formation and function, and consider the potential contribution of inhibitory interactions with other musculoskeletal cells.The PHD enzyme inhibitor FG-4592 stabilised HIF protein and stimulated osteoclast-mediated bone resorption, but inhibited differentiation of human CD14+ monocytes into osteoclasts. Formation of osteoclasts in a more physiologically relevant 3D collagen gel did not affect the sensitivity of osteoclastogenesis to FG-4592, but increased sensitivity to reduced concentrations of RANKL. Co-culture with osteoblasts amplified inhibition of osteoclastogenesis by FG-4592, whether the osteoblasts were proliferating, differentiating or in the presence of exogenous M-CSF and RANKL. Osteoblast co-culture dampened the ability of high concentrations of FG-4592 to increase bone resorption.This data provides support for the therapeutic use of PHD enzyme inhibitors to improve bone formation and/or reduce bone loss for treatment of osteolytic pathologies, and indicates that FG-4592 might also act to inhibit the formation and activity of the osteoclasts that drive osteolysis.


Sign in / Sign up

Export Citation Format

Share Document