Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression

2010 ◽  
Vol 69 (12) ◽  
pp. 2152-2159 ◽  
Author(s):  
Gisela Ruiz Heiland ◽  
Karin Zwerina ◽  
Wolfgang Baum ◽  
Trayana Kireva ◽  
Jörg H Distler ◽  
...  

IntroductionInflammation is a major risk factor for systemic bone loss. Proinflammatory cytokines like tumour necrosis factor (TNF) affect bone homeostasis and induce bone loss. It was hypothesised that impaired bone formation is a key component in inflammatory bone loss and that Dkk-1, a Wnt antagonist, is a strong inhibitor of osteoblast-mediated bone formation.MethodsTNF transgenic (hTNFtg) mice were treated with neutralising antibodies against TNF, Dkk-1 or a combination of both agents. Systemic bone architecture was analysed by bone histomorphometry. The expression of β-catenin, osteoprotegerin and osteocalcin was analysed. In vitro, primary osteoblasts were stimulated with TNF and analysed for their metabolic activity and expression of Dkk-1 and sclerostin. Sclerostin expression and osteocyte death upon Dkk-1 blockade were analysed in vivo.ResultsNeutralisation of Dkk-1 completely protected hTNFtg mice from inflammatory bone loss by preventing TNF-mediated impaired osteoblast function and enhanced osteoclast activity. These findings were accompanied by enhanced skeletal expression of β-catenin, osteocalcin and osteoprotegerin. In vitro, TNF rapidly increased Dkk-1 expression in primary osteoblasts and effectively blocked osteoblast differentiation. Moreover, blockade of Dkk-1 not only rescued impaired osteoblastogenesis but also neutralised TNF-mediated sclerostin expression in fully differentiated osteoblasts in vitro and in vivo.ConclusionsThese findings indicate that low bone formation and expression of Dkk-1 trigger inflammatory bone loss. Dkk-1 blocks osteoblast differentiation, induces sclerostin expression and leads to osteocyte death. Inhibition of Dkk-1 may thus be considered as a potent strategy to protect bone from inflammatory damage.

2020 ◽  
Vol 21 (4) ◽  
pp. 1259 ◽  
Author(s):  
Zhihao Chen ◽  
Yan Zhang ◽  
Fan Zhao ◽  
Chong Yin ◽  
Chaofei Yang ◽  
...  

Background: Irisin, a novel exercise-induced myokine, was shown to mediate beneficial effects of exercise in osteoporosis. Microgravity is a major threat to bone homeostasis of astronauts during long-term spaceflight, which results in decreased bone formation. Methods: The hind-limb unloading mice model and a random position machine are respectively used to simulate microgravity in vivo and in vitro. Results: We demonstrate that not only are bone formation and osteoblast differentiation decreased, but the expression of fibronectin type III domain-containing 5 (Fdnc5; irisin precursor) is also downregulated under simulated microgravity. Moreover, a lower dose of recombinant irisin (r-irisin) (1 nM) promotes osteogenic marker gene (alkaline phosphatase (Alp), collagen type 1 alpha-1(ColIα1)) expressions, ALP activity, and calcium deposition in primary osteoblasts, with no significant effect on osteoblast proliferation. Furthermore, r-irisin could recover the decrease in osteoblast differentiation induced by simulated microgravity. We also find that r-irisin increases β-catenin expression and partly neutralizes the decrease in β-catenin expression induced by simulated microgravity. In addition, β-catenin overexpression could also in part attenuate osteoblast differentiation reduction induced by simulated microgravity. Conclusions: The present study is the first to show that r-irisin positively regulates osteoblast differentiation under simulated microgravity through increasing β-catenin expression, which may reveal a novel mechanism, and it provides a prevention strategy for bone loss and muscle atrophy induced by microgravity.


Endocrinology ◽  
2011 ◽  
Vol 152 (6) ◽  
pp. 2141-2149 ◽  
Author(s):  
Antonia Sophocleous ◽  
Euphemie Landao-Bassonga ◽  
Robert J. van‘t Hof ◽  
Aymen I. Idris ◽  
Stuart H. Ralston

The type 2 cannabinoid receptor (CB2) has been reported to regulate bone mass and bone turnover but the mechanisms responsible are incompletely understood. In this study we investigated the role that the CB2 pathway plays in bone metabolism using a combination of genetic and pharmacological approaches. Bone mass and turnover were normal in young mice with targeted inactivation of CB2 receptor (CB2−/−), but by 12 months of age, they had developed high-turnover osteoporosis with relative uncoupling of bone resorption from bone formation. Primary osteoblasts from CB2−/− mice had a reduced capacity to form bone nodules in vitro when compared with cells from wild-type littermates and also had impaired PTH-induced alkaline phosphatase (ALP) activity. The CB2-selective agonist HU308 stimulated bone nodule formation in wild-type osteoblasts but had no effect in CB2−/− osteoblasts. Further studies in MC3T3-E1 osteoblast like cells showed that HU308 promoted cell migration and activated ERK phosphorylation, and these effects were blocked by the CB2 selective inverse agonist AM630. Finally, HU308 partially protected against ovariectomy induced bone loss in wild-type mice in vivo, primarily by stimulating bone formation, whereas no protective effects were observed in ovariectomized CB2−/− mice. These studies indicate that the CB2 regulates osteoblast differentiation in vitro and bone formation in vivo.


2019 ◽  
Vol 3 (s1) ◽  
pp. 24-24
Author(s):  
Rubens Sautchuk ◽  
Brianna H. Shares ◽  
Roman A. Eliseev

OBJECTIVES/SPECIFIC AIMS: The study aims to further investigate how cyclophilin D (CypD), the key mPTP opening regulator, affects BMSCs fate and to determine potential regulatory mechanisms involved in CypD regulation during osteogenesis. METHODS/STUDY POPULATION: We evaluated CypD mRNA expression in mouse BMSCs and in osteogenic-like (OL) cells during the course of OB differentiation. CypD protein level was also probed. Moreover, BMSCs had their mPTP activity recorded during osteoinduction. We further analyzed the effect of CypD genetic deletion on osteogenesis in vitro and in vivo. For our in vivo model, we performed the ectopic bone formation assay to asses differences in ossicle formation when CypD KO BMSCs were transplanted compared to wild type littermate BMSCs. In our in vitro model, we transfected OL cells with either CypD gain of function or CypD loss of function vector and measured their osteogenic differentiation potential. Additionally, we treated BMSCs with CypD inhibitor and compare to non-treated BMSCs for mineralization level. To determine potential regulatory mechanisms involved in CypD regulation, we analyzed the CypD gene (Ppif) promoter for potential transcription factor (TF) binding sites and found multiple Smad-binding elements within this promoter. Smads (Smad1, 5, 8) are TFs downstream from Bone Morphogenic Protein (BMP) signaling pathway that transmit cell differentiation signaling, and exert either activating or inhibitory effects on a variety of genes. We also transfect OL cells with Smad1 vector and analyzed for CypD mRNA levels. RESULTS/ANTICIPATED RESULTS: - Our data showed that CypD mRNA levels decreased in both primary cells and OL cells at day 7 and day 14 in osteogenic media. - Osteogenic induction also decreased mPTP activity. - In vivo ectopic bone formation assay showed increased ossicle fo DISCUSSION/SIGNIFICANCE OF IMPACT: Our data suggest that downregulation of CypD increases OB differentiation due to improved OxPhos activity led by mPTP closure. Our results corroborate reports of CypD downregulation and mPTP closure during neuronal differentiation in developing rat brains as well as in cardiomyocyte differentiation in developing mouse hearts. Our studies also suggest a yet unknown mechanism linking differentiation signaling with mitochondrial function – BMP/Smad mediated downregulation of CypD transcription. As initially mentioned, in a previous study, our lab showed that CypD KO mice present higher mitochondrial function and osteogenicity in aged BMSCs and less osteoporosis burden. Taken together, these results suggest that CypD can be a potential target to prevent bone loss in aging.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Nihal AlMuraikhi ◽  
Nuha Almasoud ◽  
Sarah Binhamdan ◽  
Ghaydaa Younis ◽  
Dalia Ali ◽  
...  

Background. Hedgehog (Hh) signaling is essential for osteoblast differentiation of mesenchymal progenitors during endochondral bone formation. However, the critical role of Hh signaling during adult bone remodeling remains to be elucidated. Methods. A Smoothened (SMO) antagonist/Hedgehog inhibitor, BMS-833923, identified during a functional screening of a stem cell signaling small molecule library, was investigated for its effects on the osteoblast differentiation of human skeletal (mesenchymal) stem cells (hMSC). Alkaline phosphatase (ALP) activity and Alizarin red staining were employed as markers for osteoblast differentiation and in vitro mineralization capacity, respectively. Global gene expression profiling was performed using the Agilent® microarray platform. Effects on in vivo ectopic bone formation were assessed by implanting hMSC mixed with hydroxyapatite-tricalcium phosphate granules subcutaneously in 8-week-old female nude mice, and the amount of bone formed was assessed using quantitative histology. Results. BMS-833923, a SMO antagonist/Hedgehog inhibitor, exhibited significant inhibitory effects on osteoblast differentiation of hMSCs reflected by decreased ALP activity, in vitro mineralization, and downregulation of osteoblast-related gene expression. Similarly, we observed decreased in vivo ectopic bone formation. Global gene expression profiling of BMS-833923-treated compared to vehicle-treated control cells, identified 348 upregulated and 540 downregulated genes with significant effects on multiple signaling pathways, including GPCR, endochondral ossification, RANK-RANKL, insulin, TNF alpha, IL6, and inflammatory response. Further bioinformatic analysis employing Ingenuity Pathway Analysis revealed significant enrichment in BMS-833923-treated cells for a number of functional categories and networks involved in connective and skeletal tissue development and disorders, e.g., NFκB and STAT signaling. Conclusions. We identified SMO/Hedgehog antagonist (BMS-833923) as a powerful inhibitor of osteoblastic differentiation of hMSC that may be useful as a therapeutic option for treating conditions associated with high heterotopic bone formation and mineralization.


2009 ◽  
Vol 185 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Guizhong Liu ◽  
Sapna Vijayakumar ◽  
Luca Grumolato ◽  
Randy Arroyave ◽  
HuiFang Qiao ◽  
...  

Genetic evidence indicates that Wnt signaling is critically involved in bone homeostasis. In this study, we investigated the functions of canonical Wnts on differentiation of adult multipotent human mesenchymal stem cells (hMSCs) in vitro and in vivo. We observe differential sensitivities of hMSCs to Wnt inhibition of osteogenesis versus adipogenesis, which favors osteoblastic commitment under binary in vitro differentiation conditions. Wnt inhibition of osteogenesis is associated with decreased expression of osteoblastic transcription factors and inhibition of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation, which are involved in osteogenic differentiation. An hMSC subpopulation exhibits high endogenous Wnt signaling, the inhibition of which enhances osteogenic and adipogenic differentiation in vitro. In an in vivo bone formation model, high levels of Wnt signaling inhibit de novo bone formation by hMSCs. However, hMSCs with exogenous expression of Wnt1 but not stabilized β-catenin markedly stimulate bone formation by naive hMSCs, arguing for an important role of a canonical Wnt gradient in hMSC osteogenesis in vivo.


Spine ◽  
2018 ◽  
Vol 43 (11) ◽  
pp. E616-E624 ◽  
Author(s):  
Sadaaki Kanayama ◽  
Takashi Kaito ◽  
Kazuma Kitaguchi ◽  
Hiroyuki Ishiguro ◽  
Kunihiko Hashimoto ◽  
...  

Bone ◽  
2009 ◽  
Vol 44 (4) ◽  
pp. 528-536 ◽  
Author(s):  
Meilin Wu ◽  
Eric Hesse ◽  
Frederic Morvan ◽  
Jian-Ping Zhang ◽  
Diego Correa ◽  
...  

2020 ◽  
Author(s):  
Yun Gong ◽  
Junxiao Yang ◽  
Xiaohua Li ◽  
Cui Zhou ◽  
Yu Chen ◽  
...  

AbstractOsteoblasts are multifunctional bone cells, which play essential roles in bone formation, angiogenesis regulation, as well as maintenance of hematopoiesis. Although both in vivo and in vitro studies on mice have identified several potential osteoblast subtypes based on their different transition stages or biological responses to external stimuli, the categorization of primary osteoblast subtypes in vivo in humans has not yet been achieved. Here, we used single-cell RNA sequencing (scRNA-seq) to perform a systematic cellular taxonomy dissection of freshly isolated human osteoblasts. Based on the gene expression patterns and cell lineage reconstruction, we identified three distinct cell clusters including preosteoblasts, mature osteoblasts, and an undetermined rare osteoblast subpopulation. This novel subtype was mainly characterized by the nuclear receptor subfamily 4 group A member 1 and 2 (NR4A1 and NR4A2), and its existence was confirmed by immunofluorescence staining. Trajectory inference analysis suggested that the undetermined cluster, together with the preosteoblasts, are involved in the regulation of osteoblastogenesis and also give rise to mature osteoblasts. Investigation of the biological processes and signaling pathways enriched in each subpopulation revealed that in addition to bone formation, preosteoblasts and undetermined osteoblasts may also regulate both angiogenesis and hemopoiesis. Finally, we demonstrated that there are systematic differences between the transcriptional profiles of human osteoblasts in vivo and mouse osteoblasts both in vivo and in vitro, highlighting the necessity for studying bone physiological processes in humans rather than solely relying on mouse models. Our findings provide novel insights into the cellular heterogeneity and potential biological functions of human primary osteoblasts at the single-cell level, which is an important and necessary step to further dissect the biological roles of osteoblasts in bone metabolism under various (patho-) physiological conditions.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 93 ◽  
Author(s):  
Eisner Salamanca ◽  
Chia Chen Hsu ◽  
Wan Ling Yao ◽  
Cheuk Sing Choy ◽  
Yu Hwa Pan ◽  
...  

Due to autogenous bone limitations, some substitute bone grafts were developed. Collagenated porcine graft (CPG) is able to regenerate new bone, although the number of studies is insufficient, highlighting the need for future studies to better understand the biomaterial. In order to understand better CPG′s possible dental guided bone regeneration indications, the aim of this work was to determine CPG′s biological capacity to induce osteoblast differentiation in vitro and guided bone regeneration in vivo, whilst being compared with commercial hydroxyapatite and beta tricalcium phosphate (HA/β-TCP) and porcine graft alone. Cell cytotoxicity (WST-1), alkaline phosphatase activity (ALP), and real-time polymerase chain reaction (qPCR) were assessed in vitro. Critical size defects of New Zealand white rabbits were used for the in vivo part, with critical size defect closures and histological analyses. WST-1 and ALP indicated that CPG directly stimulated a greater proliferation and confluency of cells with osteoblastic differentiation in vitro. Gene sequencing indicated stable bone formation markers, decreased resorption makers, and bone remodeling coupling factors, making the transition from osteoclast to osteoblast expression at the end of seven days. CPG resulted in the highest new bone regeneration by osteoconduction in critical size defects of rabbit calvaria at eight weeks. Nonetheless, all biomaterials achieved nearly complete calvaria defect closure. CPG was found to be osteoconductive, like porcine graft and HA/β-TCP, but with higher new bone formation in critical size defects of rabbit calvaria at eight weeks. CPG can be used for different dental guided bone regeneration procedures; however, further studies are necessary.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Dan Zhang ◽  
Kim De Veirman ◽  
Rong Fan ◽  
Qiang Jian ◽  
Yuchen Zhang ◽  
...  

Abstract Background Bone destruction is a hallmark of multiple myeloma (MM). It has been reported that proteasome inhibitors (PIs) can reduce bone resorption and increase bone formation in MM patients, but the underlying mechanisms remain unclear. Methods Mesenchymal stem cells (MSCs) were treated with various doses of PIs, and the effects of bortezomib or carfilzomib on endoplasmic reticulum (ER) stress signaling pathways were analyzed by western blotting and real-time PCR. Alizarin red S (ARS) and alkaline phosphatase (ALP) staining were used to determine the osteogenic differentiation in vitro. Specific inhibitors targeting different ER stress signaling and a Tet-on inducible overexpressing system were used to validate the roles of key ER stress components in regulating osteogenic differentiation of MSCs. Chromatin immunoprecipitation (ChIP) assay was used to evaluate transcription factor-promoter interaction. MicroCT was applied to measure the microarchitecture of bone in model mice in vivo. Results We found that both PERK-ATF4 and IRE1α-XBP1s ER stress branches are activated during PI-induced osteogenic differentiation. Inhibition of ATF4 or XBP1s signaling can significantly impair PI-induced osteogenic differentiation. Furthermore, we demonstrated that XBP1s can transcriptionally upregulate ATF4 expression and overexpressing XBP1s can induce the expression of ATF4 and other osteogenic differentiation-related genes and therefore drive osteoblast differentiation. MicroCT analysis further demonstrated that inhibition of XBP1s can strikingly abolish bortezomib-induced bone formation in mouse. Conclusions These results demonstrated that XBP1s is a master regulator of PI-induced osteoblast differentiation. Activation of IRE1α-XBP1s ER stress signaling can promote osteogenesis, thus providing a novel strategy for the treatment of myeloma bone disease.


Sign in / Sign up

Export Citation Format

Share Document