Bacterial communities on the gills of bonefish (Albula vulpes) in the Florida Keys and The Bahamas show spatial structure and differential abundance of disease-associated bacteria

2020 ◽  
Vol 167 (6) ◽  
Author(s):  
Christopher D. Dunn ◽  
Lewis J. Campbell ◽  
Elizabeth M. Wallace ◽  
Andy J. Danylchuk ◽  
Steven J. Cooke ◽  
...  
2011 ◽  
Vol 77 (20) ◽  
pp. 7207-7216 ◽  
Author(s):  
Naomi F. Montalvo ◽  
Russell T. Hill

ABSTRACTThe giant barrel spongesXestospongiamutaandXestospongiatestudinariaare ubiquitous in tropical reefs of the Atlantic and Pacific Oceans, respectively. They are key species in their respective environments and are hosts to diverse assemblages of bacteria. These two closely related sponges from different oceans provide a unique opportunity to examine the evolution of sponge-associated bacterial communities. Mitochondrial cytochrome oxidase subunit I gene sequences fromX.mutaandX.testudinariashowed little divergence between the two species. A detailed analysis of the bacterial communities associated with these sponges, comprising over 900 full-length 16S rRNA gene sequences, revealed remarkable similarity in the bacterial communities of the two species. Both sponge-associated communities include sequences found only in the twoXestospongiaspecies, as well as sequences found also in other sponge species and are dominated by three bacterial groups,Chloroflexi,Acidobacteria, andActinobacteria. While these groups consistently dominate the bacterial communities revealed by 16S rRNA gene-based analysis of sponge-associated bacteria, the depth of sequencing undertaken in this study revealed clades of bacteria specifically associated with each of the twoXestospongiaspecies, and also with the genusXestospongia, that have not been found associated with other sponge species or other ecosystems. This study, comparing the bacterial communities associated with closely related but geographically distant sponge hosts, gives new insight into the intimate relationships between marine sponges and some of their bacterial symbionts.


mSystems ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Collin M. Timm ◽  
Kelsey R. Carter ◽  
Alyssa A. Carrell ◽  
Se-Ran Jun ◽  
Sara S. Jawdy ◽  
...  

The identification of a common “stress microbiome” indicates tightly controlled relationships between the plant host and bacterial associates and a conserved structure in bacterial communities associated with poplar trees under different growth conditions. The ability of the microbiome to buffer the plant from extreme environmental conditions coupled with the conserved stress microbiome observed in this study suggests an opportunity for future efforts aimed at predictably modulating the microbiome to optimize plant growth.


Author(s):  
Lilly M Verhagen ◽  
Ismar A Rivera-Olivero ◽  
Melanie Clerc ◽  
Mei Ling J N Chu ◽  
Jody van Engelsdorp Gastelaars ◽  
...  

Abstract Background Recent research suggests that the microbiota affects susceptibility to both respiratory tract infections (RTIs) and gastrointestinal infections (GIIs). In order to optimize global treatment options, it is important to characterize microbiota profiles across different niches and geographic/socioeconomic areas where RTI and GII prevalences are high. Methods We performed 16S sequencing of nasopharyngeal swabs from 209 Venezuelan Amerindian children aged 6 weeks–59 months who were participating in a 13-valent pneumococcal conjugate vaccine (PCV13) study. Using random forest models, differential abundance testing, and regression analysis, we determined whether specific bacteria were associated with RTIs or GIIs and variation in PCV13 response. Results Microbiota compositions differed between children with or without RTIs (P = .018) or GIIs (P = .001). Several species were associated with the absence of infections. Some of these health-associated bacteria are also observed in developed regions, such as Corynebacterium (log2(fold change [FC]) = 3.30 for RTIs and log2(FC) = 1.71 for GIIs), while others are not commonly observed in developed regions, such as Acinetobacter (log2(FC) = 2.82 and log2(FC) = 5.06, respectively). Klebsiella spp. presence was associated with both RTIs (log2(FC) = 5.48) and GIIs (log2(FC) = 7.20). Conclusions The nasopharyngeal microbiota of rural Venezuelan children included several bacteria that thrive in tropical humid climates. Interestingly, nasopharyngeal microbiota composition not only differed in children with an RTI but also in those with a GII, which suggests a reciprocal interplay between the 2 environments. Knowledge of region-specific microbiota patterns enables tailoring of preventive and therapeutic approaches.


2020 ◽  
Vol 7 (6) ◽  
pp. e896
Author(s):  
Alexandre Lecomte ◽  
Lucie Barateau ◽  
Pedro Pereira ◽  
Lars Paulin ◽  
Petri Auvinen ◽  
...  

ObjectiveTo test the hypothesis that narcolepsy type 1 (NT1) is related to the gut microbiota, we compared the microbiota bacterial communities of patients with NT1 and control subjects.MethodsThirty-five patients with NT1 (51.43% women, mean age 38.29 ± 19.98 years) and 41 controls (57.14% women, mean age 36.14 ± 12.68 years) were included. Stool samples were collected, and the fecal microbiota bacterial communities were compared between patients and controls using the well-standardized 16S rRNA gene amplicon sequencing approach. We studied alpha and beta diversity and differential abundance analysis between patients and controls, and between subgroups of patients with NT1.ResultsWe found no between-group differences for alpha diversity, but we discovered in NT1 a link with NT1 disease duration. We highlighted differences in the global bacterial community structure as assessed by beta diversity metrics even after adjustments for potential confounders as body mass index (BMI), often increased in NT1. Our results revealed differential abundance of several operational taxonomic units within Bacteroidetes, Bacteroides, and Flavonifractor between patients and controls, but not after adjusting for BMI.ConclusionWe provide evidence of gut microbial community structure alterations in NT1. However, further larger and longitudinal multiomics studies are required to replicate and elucidate the relationship between the gut microbiota, immunity dysregulation and NT1.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Ramona Marasco ◽  
Eleonora Rolli ◽  
Marco Fusi ◽  
Ameur Cherif ◽  
Ayman Abou-Hadid ◽  
...  

Plant-associated bacteria provide important services to host plants. Environmental factors such as cultivar type and pedoclimatic conditions contribute to shape their diversity. However, whether these environmental factors may influence the plant growth promoting (PGP) potential of the root-associated bacteria is not widely understood. To address this issue, the diversity and PGP potential of the bacterial assemblage associated with the grapevine root system of different cultivars in three Mediterranean environments along a macrotransect identifying an aridity gradient were assessed by culture-dependent and independent approaches. According to 16S rRNA gene PCR-DGGE, the structure of endosphere and rhizosphere bacterial communities was highly diverse (P=0.03) and was associated with a cultivar/latitudinal/climatic effect. Despite being diverse, the bacterial communities associated with Egyptian grapevines shared a higher similarity with the Tunisian grapevines than those cultivated in North Italy. A similar distribution, according to the cultivar/latitude/aridity gradients, was observed for the cultivable bacteria. Many isolates (23%) presentedin vitromultiple stress resistance capabilities and PGP activities, the most frequent being auxin synthesis (82%), insoluble phosphate solubilisation (61%), and ammonia production (70%). The comparable numbers and types of potential PGP traits among the three different environmental settings indicate a strong functional homeostasis of beneficial bacteria associated with grape root.


1998 ◽  
Vol 44 (6) ◽  
pp. 499-513 ◽  
Author(s):  
Sari Timonen ◽  
Kirsten S Jørgensen ◽  
Kielo Haahtela ◽  
Robin Sen

Bacteria were isolated and characterized from uncolonized soil, nonmycorrhizal and mycorrhizal short roots, and soil-colonizing external mycelium from intact Pinus sylvestris - Suillus bovinus and Pinus sylvestris - Paxillus involutus mycorrhizospheres developed in microcosms containing dry pine forest humus or nursery peat. Total numbers of colony-forming units (CFU/mg dry weight) in the different locations from all ectomycorrhizospheres indicated an overall bacterial-enrichment gradient towards the roots, whereas sporeformers were more evenly distributed. Fluorescent pseudomonads were commonly isolated from all mycorrhizosphere locations in nursery peat, but they were nearly absent from the forest humus community. In contrast, sporeformers were more abundant at all locations in the latter growth substrate. The bacterial species composition of forest and nursery mycorrhizospheres was clearly divergent when characterized according to their carbon source utilization patterns in Biolog®GN or GP microplates. Factorial-designed ANOVA of a principal component analysis of the carbon source utilization data showed significant differences between isolates from the two soil types and, to a lesser extent, between S. bovinus and Paxillus involutus mycorrhizospheres. Bacterial communities from mycorrhizospheres and uncolonized soil were distinguished by their preferential utilization of carbohydrates and organic and amino acids, respectively. Suillus bovinus associated bacteria appeared to favour mannitol and Paxillus involutus associated bacteria appeared to favour fructose as carbon sources. This study demonstrates the combined effect of soil type, fungal symbiont, and precise location on bacterial communities associated with Pinus sylvestris ectomycorrhizospheres.Key words: Biolog, carbon source utilization, ectomycorrhiza, Scots pine, soil bacteria.


Sign in / Sign up

Export Citation Format

Share Document