Prey, feeding rates, and asexual reproduction rates of the introduced oligohaline hydrozoan Moerisia lyonsi

1999 ◽  
Vol 134 (2) ◽  
pp. 317-325 ◽  
Author(s):  
J. E. Purcell ◽  
U. Båmstedt ◽  
A. Båmstedt
2017 ◽  
Vol 51 ◽  
pp. 242-250
Author(s):  
M. V. Dulin

Tetralophozia setiformis is a widespread species occurring usually without organs of sexual and asexual reproduction. Gemmae of Tetralophozia setiformis were observed for the second time in Russia and Eurasia in the Northern Urals, Komi Republic. They form compact masses over upper leaves. The compact masses consist largely (70 %) of immature gemmae. Description of gemmae and gemmiparous shoots from the Northern Urals and their comparison with those from the other known localities, namely British Columbia (Canada) and the Murmansk Region (European Russia) were carried out. The gemmiparous plants of T. setiformis from the Northern Urals have approximately the same width as plants without gemmae but they are shorter. The leaves of gemmiparous plants from the Northern Urals are similar to leaves of gemmiparous plants from British Columbia. The leaf shape in upper part of the gemmiparous shoots varies from the typical to ± modified from gemmae production. These leaf shape transitions include reduction of leaf size and lobe number from 4 to 2–3, suppression of development and disappearance of characteristic teeth at the base of sinus. Gemmae size (17 × 22 μm) of plants from the Northern Urals is within variability recorded for plants from the Murmansk Region and British Columbia.


Impact ◽  
2020 ◽  
Vol 2020 (6) ◽  
pp. 73-75
Author(s):  
Akihiko Watanabe

One of the unifying traits of life on this planet is reproduction, or life's ability to make copies of itself. The mode of reproduction has evolved over time, having almost certainly begun with simple asexual reproduction when the ancestral single celled organism divided into two. Since these beginnings' life has tried out numerous strategies, and perhaps one of the most important and successful has been sexual reproduction. This form of reproduction relies on the union of gametes, otherwise known as sperm and egg. Evolutionarily, sexual reproduction allows for greater adaptive potential because the genes of two unique individuals have a chance to recombine and mix in order to produce a new individual. Unlike asexual reproduction which produces genetically-identical clones of the parent individual, sex produces offspring with novel genes and combinations of genes. Therefore, in the face of new selective pressures there is a higher chance that one of these novel genetic profiles will produce an adaptation that is advantageous in the new circumstances. Dr Akihiko Watanabe is a reproductive biologist based in the Department of Biology, Faculty of Science Yamagata University in Japan, he is currently working on three research projects; a comparative study on the signalling pathways for inducing sperm motility and acrosome reaction in amphibians, the mechanism behind the adaptive modification of sperm morphology and motility, and the origin of sperm motility initiating substance (SMIS).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Donghui Ma ◽  
Mengjie Lu ◽  
Zhichang Cheng ◽  
Xingnan Du ◽  
Xiaoyu Zou ◽  
...  

Abstract Background Parental investment by birds is limited by the habitat environment, and a male parent increases its effort to reproduce in birds that live in high-altitude areas. Methods A study of the reproductive behaviour of the Saxaul Sparrow (Passer ammodendri) and the Isabelline Shrike (Lanius isabellinus) was carried out at the Gansu An’xi Extremely Arid Desert National Nature Reserve in northwest China to determine the reproductive input of passerine species in desert habitats. Results In Saxaul Sparrows, compared to the female parent, the male parent exhibited a significantly higher frequency of nest-defense behaviour (chirping and warning) during nesting, hatching and feeding periods. In addition, in comparison to the female parent, the male parent exhibited almost equal frequencies of nesting and incubation but fed nestlings significantly more times. Similar to the male sparrows, the feeding rates of the male Isabelline Shrikes were significantly higher than those of the females. The hatching rate and fledging rate of the Saxaul Sparrow on average in this study were 81.99 and 91.92%, respectively, while those of the shrike were 69.00 and 96.53%, respectively. Conclusions These two different passerine species living in the same desert environment exhibited the same trend in their reproductive investments. Adapting to desert environments is a strategy that may have evolved in passerines where male parent birds put more effort than females into reproduction to ensure high reproductive output.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 88
Author(s):  
Mohamed Anwer Abdeen ◽  
Abouelnadar Elsayed Salem ◽  
Guozhong Zhang

Combine harvesters are widely used worldwide in harvesting many crops, and they have many functions that cover the entire harvesting process, such as cutting, threshing, separating, and cleaning. The threshing drum is the core working device of the combine harvester and plays an influential role in rice threshing efficiency, threshing power requirement, and seed loss. In this study, two structures of rice threshers (conical-shaped and cylindrical-shaped) were tested and evaluated for performance under different thresher rotating speeds of 1100, 1300, and 1500 rpm and different feeding rates of 0.8, 1.1, and 1.4 kg/s. The experiment was designed using the Taguchi method, and the obtained results were evaluated using the same technique. The thresher structure and operating parameters were assessed and optimized with reference to threshing efficiency, required power, and productivity. The obtained results revealed that increasing thresher rotating speed and the feeding rate positively related to threshing efficiency, power, and productivity. The highest efficiency of 98% and the maximum productivity of 0.64 kg/s were obtained using the conical-shaped thresher under a 1500 rpm rotating speed and a feed rate of 1.4 kg/s, whereas the minimum required power of 5.45 kW was obtained using the conical thresher under a rotating speed of 1100 rpm and a feed rate of 0.8 kg/s.


Genetics ◽  
2003 ◽  
Vol 164 (3) ◽  
pp. 1099-1118 ◽  
Author(s):  
Sarah P Otto

AbstractIn diploids, sexual reproduction promotes both the segregation of alleles at the same locus and the recombination of alleles at different loci. This article is the first to investigate the possibility that sex might have evolved and been maintained to promote segregation, using a model that incorporates both a general selection regime and modifier alleles that alter an individual’s allocation to sexual vs. asexual reproduction. The fate of different modifier alleles was found to depend strongly on the strength of selection at fitness loci and on the presence of inbreeding among individuals undergoing sexual reproduction. When selection is weak and mating occurs randomly among sexually produced gametes, reductions in the occurrence of sex are favored, but the genome-wide strength of selection is extremely small. In contrast, when selection is weak and some inbreeding occurs among gametes, increased allocation to sexual reproduction is expected as long as deleterious mutations are partially recessive and/or beneficial mutations are partially dominant. Under strong selection, the conditions under which increased allocation to sex evolves are reversed. Because deleterious mutations are typically considered to be partially recessive and weakly selected and because most populations exhibit some degree of inbreeding, this model predicts that higher frequencies of sex would evolve and be maintained as a consequence of the effects of segregation. Even with low levels of inbreeding, selection is stronger on a modifier that promotes segregation than on a modifier that promotes recombination, suggesting that the benefits of segregation are more likely than the benefits of recombination to have driven the evolution of sexual reproduction in diploids.


Sign in / Sign up

Export Citation Format

Share Document