Thermal boundary layer and the characteristic length on natural convection over a horizontal plate

2006 ◽  
Vol 43 (4) ◽  
pp. 333-339 ◽  
Author(s):  
Bulent Kozanoglu ◽  
Jorge Lopez
2014 ◽  
Vol 18 (2) ◽  
pp. 555-561 ◽  
Author(s):  
Bulent Kozanoglu ◽  
Francisco Rubio

Natural convection from a downward facing horizontal heated plate was analyzed. An expression for the thickness of the thermal boundary layer was obtained in terms of Rayleigh number. Assuming this thickness as the characteristic length of the problem, the data published by other authors were modified and an equation for Nusselt number is presented. It was observed that this equation correlates the data more precisely than the commonly known equations in the literature that employ the ratio of the area to the perimeter or the shorter side of the plate as the characteristic length. It is concluded that taking the thermal boundary layer as the characteristic length of phenomenon is a proper approach and correlates all the data closely.


Author(s):  
H. Chuang

Abstract Combined effects of natural convection and radiation on a laminar boundary-layer flow over a semi-infinite horizontal flat plate are studied. Increasing the natural convection-radiation interaction in the boundary layer increases the shearing stress on the wall, the boundary-layer thickness, the maximum velocity attainable by fluid, and the buoyancy force in the boundary layer. However, the temperature gradient at the plate decreases with increasing interaction. They generally increase with increasing temperature ratio. Automated computations of the dimensionless velocity, temperature, and buoyancy force in the boundary layer yield convergent solutions which are substantially different from those available in the literature for high natural convection-radiation interactions.


Author(s):  
Heinz Herwig

The often used argument that heat transfer in micro-sized devices is superior due to the fact that the transfer area scales like L2 but the volume like L3 with L as a characteristic length is critically analyzed for various heat transfer situations. It turns out that for steady state heat transfer cases the thermal boundary layer behavior is more important. In general, dimensional analysis should be applied to understand how the heat transfer performance changes when scales are reduced from macro- to micro-size.


2007 ◽  
Vol 586 ◽  
pp. 491-506
Author(s):  
ROBERT J. WHITTAKER ◽  
JOHN R. LISTER

Laminar flow beneath a finite heated horizontal plate in a rapidly rotating system is considered in both axisymmetric and planar geometries. In particular, we examine the case where the Ekman layer is confined well within a much deeper (yet still thin) thermal boundary layer. This situation corresponds to the regime E−3/2 ≪ Ra ≪ E−5/2, where E and Ra are the natural Ekman and Rayleigh numbers for the system (equation (2.6)). The outward flux of buoyant fluid from beneath the plate occurs primarily in the Ekman layer, while outward flow in the thicker thermal boundary layer is inhibited by a dominant thermal-wind balance. The O(Ra−1/2E−3/4 thickness of the thermal boundary layer is determined by a balance between Ekman suction and diffusion. There are several possible asymptotic regimes near the outer edge of the plate, differing only by logarithmic factors, but in all cases the edge corresponds to a simple boundary condition on the interior flow. With a uniform plate temperature, the dimensionless heat transfer (equation (7.6)) is given by a Nusselt number $\Nu\,{\sim} \tfrac{1}{2}\Ra^{1/2}\Ek^{3/4}[\ln (\Ra^{-1} \Ek ^{-5/2})]^{1/2}$. The solution for a uniform plate heat flux is also presented.


2014 ◽  
Vol 764 ◽  
pp. 219-249 ◽  
Author(s):  
Peng Yu ◽  
John C. Patterson ◽  
Chengwang Lei

AbstractThis study presents a detailed scaling analysis quantifying the transient behaviour of natural convection in a reservoir model induced by iso-flux surface heating. It is found that horizontal conduction, which has often been neglected in previous analyses, plays an important role in the development of the flow. Depending on the Rayleigh number, three possible pathways through which the flow develops towards the final steady state are identified. A thermal boundary layer initially grows downwards from the surface. When the thermal boundary layer reaches the sloping bottom and becomes indistinct, a horizontal temperature gradient establishes due to the increasing water depth in the offshore direction. A flow is then driven towards the offshore direction by a buoyancy-induced horizontal pressure gradient, which convects away the heat input from the water surface. On the other hand, the horizontal temperature gradient also conducts heat away. The flow behaviour is determined by the interaction between the horizontal conduction and convection. An interesting flow feature revealed by the present scaling analysis is that the region across which the thermal boundary layer encompasses the full water depth shrinks over time at a certain stage of the flow development. The shrinking process eventually stops when this region coincides with a conduction-dominated subregion. The present scaling results are verified by corresponding numerical simulations.


2012 ◽  
Vol 707 ◽  
pp. 342-368 ◽  
Author(s):  
Yadan Mao ◽  
Chengwang Lei ◽  
John C. Patterson

AbstractThe present investigation is concerned with natural convection in a wedge-shaped domain induced by constant isothermal heating at the water surface. Complementary to the study of daytime heating by solar radiation relevant to nearshore regions of lakes and reservoirs previously reported by the same authors, this study focuses on sensible heating imposed by the atmosphere when it is warmer than the water body. A semi-analytical approach coupled with scaling analysis and numerical simulation is adopted to resolve the problem. Two flow regimes are identified depending on the comparison between the Rayleigh number and the inverse of the square of the bottom slope. For the lower Rayleigh number regime, the entire flow domain eventually becomes isothermal and stationary. For the higher Rayleigh number regime, the flow domain is composed of two distinct subregions, a conductive subregion near the shore and a convective subregion offshore. Within the conductive subregion, the maximum local flow velocity occurs when the thermal boundary layer reaches the local bottom, and the subregion eventually becomes isothermal and stationary. In the offshore convective subregion, a steady state is reached with a distinct thermal boundary layer below the surface and a steady flow velocity. The dividing position between the two subregions and the major time and velocity scales governing the flow development in both subregions are proposed by the scaling analysis and validated by corresponding numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document