Two-phase nanofluid condensation and heat transfer modeling using least square method (LSM) for industrial applications

2017 ◽  
Vol 53 (6) ◽  
pp. 2061-2072 ◽  
Author(s):  
M. Hatami ◽  
S. Mosayebidorcheh ◽  
D. Jing
2020 ◽  
Vol 1 (1) ◽  
pp. 128-140 ◽  
Author(s):  
Mohammad Hatami ◽  
◽  
D Jing ◽  

In this study, two-phase asymmetric peristaltic Carreau-Yasuda nanofluid flow in a vertical and tapered wavy channel is demonstrated and the mixed heat transfer analysis is considered for it. For the modeling, two-phase method is considered to be able to study the nanoparticles concentration as a separate phase. Also it is assumed that peristaltic waves travel along X-axis at a constant speed, c. Furthermore, constant temperatures and constant nanoparticle concentrations are considered for both, left and right walls. This study aims at an analytical solution of the problem by means of least square method (LSM) using the Maple 15.0 mathematical software. Numerical outcomes will be compared. Finally, the effects of most important parameters (Weissenberg number, Prandtl number, Brownian motion parameter, thermophoresis parameter, local temperature and nanoparticle Grashof numbers) on the velocities, temperature and nanoparticles concentration functions are presented. As an important outcome, on the left side of the channel, increasing the Grashof numbers leads to a reduction in velocity profiles, while on the right side, it is the other way around.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3963 ◽  
Author(s):  
Jia-Xin Li ◽  
Yun-Ze Li ◽  
Ben-Yuan Cai ◽  
En-Hui Li

This paper presents an air-oriented spray cooling system (SCS) integrated with a two-phase ejector for the thermal management system. Considering its aeronautical application, the spray nozzle in the SCS is an air-blast one. Heat transfer performance (HTP) of air-water spray cooling was studied experimentally on the basis of the ground-based test. Factors including pressure difference between water-inlet-pressure (WIP) and spray cavity one (PDWIC) and the spray volumetric flow rate (SVFR) were investigated and discussed. Under a constant operating condition, the cooling capacity can be promoted by the growth factors of the PDWIC and SVFR with the values from 51.90 kPa to 235.35 kPa and 3.91 L ⋅ h − 1 to 14.53 L ⋅ h − 1 , respectively. Under the same heating power, HTP is proportional to the two dimensionless parameters Reynolds number and Weber number due to the growth of droplet-impacting velocity and droplet size as the increasing of PDWIC or SVFR. Additionally, compared with the factor of the droplet size, the HTP is more sensitive to the variation in the droplet-impacting velocity. Based on the experimental data, an empirical experimental correlation for the prediction of the dimensionless parameter Nusselt number in the non-boiling region with the relative error of only ± 10 % was obtained based on the least square method.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Xuehua Shen ◽  
Qingyu Xiong ◽  
Weiren Shi ◽  
Shan Liang ◽  
Xin Shi ◽  
...  

Temperature, especially temperature distribution, is one of the most fundamental and vital parameters for theoretical study and control of various industrial applications. In this paper, ultrasonic thermometry to reconstruct temperature distribution is investigated, referring to the dependence of ultrasound velocity on temperature. In practical applications of this ultrasonic technique, reconstruction algorithm based on least square method is commonly used. However, it has a limitation that the amount of divided blocks of measure area cannot exceed the amount of effective travel paths, which eventually leads to its inability to offer sufficient temperature information. To make up for this defect, an improved reconstruction algorithm based on least square method and multiquadric interpolation is presented. And then, its reconstruction performance is validated via numerical studies using four temperature distribution models with different complexity and is compared with that of algorithm based on least square method. Comparison and analysis indicate that the algorithm presented in this paper has more excellent reconstruction performance, as the reconstructed temperature distributions will not lose information near the edge of area while with small errors, and its mean reconstruction time is short enough that can meet the real-time demand.


Author(s):  
M. Venkatesan ◽  
M. Aravinthan ◽  
Sarit K. Das ◽  
A. R. Balakrishnan

Two phase flows in mini channels occur in many industrial applications such as electronic cooling, compact heat exchangers, compact refrigeration systems and in micro propulsion devices. Due to its significance, research on two phase flow in mini channels has become attractive. However, in recent times a controversy exists whether flow in minichannel is different from macro flow because there are still substantial disagreements among various experimental results. In the present study an experimental investigation is carried out for fluid flow and boiling heat transfer characteristics of mini channels with tube diameters ranging from 1–3mm. The tubes were made of SS with water as the working fluid. The variation in friction factor and Nusselt number with decrease in tube diameter for single phase flow was systematically studied. The point of Onset of Nucelate Boiling (ONB) was identified based on wall temperature profile. The effect of heat flux and mass flux on two phase pressure drop with three different tube diameters during sub cooled boiling were investigated. The results reveal that there is an unmistakable effect of tube diameter on fluid friction and onset of boiling during sub cooled boiling in tubes of mini channel dimensions.


2007 ◽  
Vol 15 (6) ◽  
pp. 18-23
Author(s):  
Carlos Hidrovo ◽  
Terence Lundy

Microfluidics, the study of fluid flow through structures with micrometer scale dimensions, is an increasingly important discipline within a number of commercial and industrial applications. One focus of active microfluidic research at the Stanford University Microscale Heat Transfer Laboratories (MHTL) is mass and heat transport in two-phase flows, which has applications in the cooling of integrated circuits and the management of water created in PEM fuel cells. At its core, two-phase microfluidics is the study of interactions between moving liquids and/or gases and/or solids (though not necessarily stationary) structures. Advanced confocal microscopy, with its ability to visualize and measure both flow and structure on a single instrumental platform, will certainly play a key role in the continuing development of microfluidic devices.


2021 ◽  
Author(s):  
Aqeel ur Rehman ◽  
Zaheer Abbas

Many boundary value problems (BVPs) have dual solutions in some cases containing one stable solution (upper branch) while other unstable (lower branch). In this paper, MHD flow and heat transfer past a shrinking sheet is studied for three distinct fluids: kerosene hybrid nanofluid, kerosene nanofluid, and kerosene nanofluid. The partial differential equations (PDEs) are turned into ordinary differential equations (ODEs) using an appropriate transformation and then dual solutions are obtained analytically by employing the Least Square method (LSM). Moreover, stability analysis is implemented on the time-dependent case by calculating the least eigenvalues using Matlab routine bvp4c. It is noticed that negative eigenvalue is related to unstable solution i.e., it provides initial progress of disturbance and positive eigenvalue is related to stable solution i.e., the disturbance in solution decline initially. The impacts of various parameters, skin friction coefficient, and local Nusselt number for dual solutions are presented graphically. It is also noted that the results obtained for hybrid nanofluids are better than ordinary nanofluids.


Author(s):  
Zhenyu Liu ◽  
Bengt Sunden ◽  
Jinliang Yuan

The understanding of two-phase flow and heat transfer with phase change in minichannels is needed for the design and optimization of heat exchangers and other industrial applications. In this study a three-dimensional numerical model has been developed to predict filmwise condensation heat transfer inside a rectangular minichannel. The Volume of Fluid (VOF) method is used to track the vapor-liquid interface. The modified High Resolution Interface Capture (HRIC) scheme is employed to keep the interface sharp. The governing equations and the VOF equation with relevant source terms for condensation are solved. The surface tension is taken into account in the modeling and it is evaluated by the Continuum Surface Force (CSF) approach. The simulation is performed using the CFD software package, ANSYS FLUENT, and an in-house developed code. This in-house code is specifically developed to calculate the source terms associated with phase change. These terms are deduced from Hertz-Knudsen equation based on the kinetic gas theory. The numerical results are validated with data obtained from the open literature. The standard k-ω model is applied to model the turbulence through both the liquid and vapor phase. The numerical results show that surface tension plays an important role in the condensation heat transfer process. Heat transfer enhancement is obtained due to the presence of the corners. The surface tension pulls the liquid towards the corners and reduces the average thermal resistance in the cross section.


Sign in / Sign up

Export Citation Format

Share Document