On the topological center of a Banach algebra related to a foundation topological semigroup

2011 ◽  
Vol 84 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Saeid Maghsoudi ◽  
Rasoul Nasr-Isfahani
2018 ◽  
Vol 17 (09) ◽  
pp. 1850169 ◽  
Author(s):  
Hossein Javanshiri ◽  
Mehdi Nemati

Let [Formula: see text] and [Formula: see text] be Banach algebras such that [Formula: see text] is a Banach [Formula: see text]-bimodule with compatible actions. We define the product [Formula: see text], which is a strongly splitting Banach algebra extension of [Formula: see text] by [Formula: see text]. After characterization of the multiplier algebra, topological center, (maximal) ideals and spectrum of [Formula: see text], we restrict our investigation to the study of semisimplicity, regularity, Arens regularity of [Formula: see text] in relation to that of the algebras [Formula: see text], [Formula: see text] and the action of [Formula: see text] on [Formula: see text]. We also compute the first cohomology group [Formula: see text] for all [Formula: see text] as well as the first-order cyclic cohomology group [Formula: see text], where [Formula: see text] is the [Formula: see text]th dual space of [Formula: see text] when [Formula: see text] and [Formula: see text] itself when [Formula: see text]. These results are not only of interest in their own right, but also they pave the way for obtaining some new results for Lau products and module extensions of Banach algebras as well as triangular Banach algebra. Finally, special attention is devoted to the cyclic and [Formula: see text]-weak amenability of [Formula: see text]. In this context, several open questions arise.


1969 ◽  
Vol 66 (2) ◽  
pp. 265-274 ◽  
Author(s):  
M. A. Kaashoek ◽  
T. T. West

A monothetic semigroup is a topological semigroup with jointly continuous multiplication which contains a dense cyclic subsemigroup. These semi-groups arise in a natural way in the study of semi-algebras. In (4) we showed that a compact monothetic semigroup in a Banach algebra can be characterized in terms of the spectral properties of a generating element. In this paper these spectral theorems are linked with the well-known structure theory of compact semigroups.


Author(s):  
D. J. Parsons

If S is an infinite, discrete, commutative semigroup then the semigroup algebra l1(S) is a commutative Banach algebra. Its dual is l∞(S), which is isometrically iso-morphic to C(βS), the space of continuous functions on the Stone-Čech compactification of S. This fact enables us to identify the second dual of l1(S) with M(βS), the space of bounded regular Borel measures on βS. Endowed with the Arens product the second dual is also a Banach algebra, so it is natural to ask whether a product may be defined in M(βS) without reference to l1(S). In §4 this is shown to be possible even when S is a non-discrete semitopological semigroup, provided that the operation in S may be extended to make βS into a left-topological semigroup in the manner of, for example, [2] where further references may be found. (Note, however, that the construction there is of a right-topological semigroup.) Having done this we may use results on βS to provide information about the measure algebra.


Author(s):  
PRAKASH A. DABHI ◽  
DARSHANA B. LIKHADA

Abstract Let $(G_1,\omega _1)$ and $(G_2,\omega _2)$ be weighted discrete groups and $0\lt p\leq 1$ . We characterise biseparating bicontinuous algebra isomorphisms on the p-Banach algebra $\ell ^p(G_1,\omega _1)$ . We also characterise bipositive and isometric algebra isomorphisms between the p-Banach algebras $\ell ^p(G_1,\omega _1)$ and $\ell ^p(G_2,\omega _2)$ and isometric algebra isomorphisms between $\ell ^p(S_1,\omega _1)$ and $\ell ^p(S_2,\omega _2)$ , where $(S_1,\omega _1)$ and $(S_2,\omega _2)$ are weighted discrete semigroups.


Author(s):  
SHIHO OI

Abstract Li et al. [‘Weak 2-local isometries on uniform algebras and Lipschitz algebras’, Publ. Mat.63 (2019), 241–264] generalized the Kowalski–Słodkowski theorem by establishing the following spherical variant: let A be a unital complex Banach algebra and let $\Delta : A \to \mathbb {C}$ be a mapping satisfying the following properties: (a) $\Delta $ is 1-homogeneous (that is, $\Delta (\lambda x)=\lambda \Delta (x)$ for all $x \in A$ , $\lambda \in \mathbb C$ ); (b) $\Delta (x)-\Delta (y) \in \mathbb {T}\sigma (x-y), \quad x,y \in A$ . Then $\Delta $ is linear and there exists $\lambda _{0} \in \mathbb {T}$ such that $\lambda _{0}\Delta $ is multiplicative. In this note we prove that if (a) is relaxed to $\Delta (0)=0$ , then $\Delta $ is complex-linear or conjugate-linear and $\overline {\Delta (\mathbf {1})}\Delta $ is multiplicative. We extend the Kowalski–Słodkowski theorem as a conclusion. As a corollary, we prove that every 2-local map in the set of all surjective isometries (without assuming linearity) on a certain function space is in fact a surjective isometry. This gives an affirmative answer to a problem on 2-local isometries posed by Molnár [‘On 2-local *-automorphisms and 2-local isometries of B(H)', J. Math. Anal. Appl.479(1) (2019), 569–580] and also in a private communication between Molnár and O. Hatori, 2018.


Author(s):  
John Howie ◽  
Steven Duplij ◽  
Ali Mostafazadeh ◽  
Masaki Yasue ◽  
Vladimir Ivashchuk

2018 ◽  
Vol 11 (02) ◽  
pp. 1850021 ◽  
Author(s):  
A. Zivari-Kazempour

We prove that each surjective Jordan homomorphism from a Banach algebra [Formula: see text] onto a semiprime commutative Banach algebra [Formula: see text] is a homomorphism, and each 5-Jordan homomorphism from a unital Banach algebra [Formula: see text] into a semisimple commutative Banach algebra [Formula: see text] is a 5-homomorphism.


1967 ◽  
Vol 8 (1) ◽  
pp. 41-49 ◽  
Author(s):  
F. F. Bonsall

Let B(X) denote the Banach algebra of all bounded linear operators on a Banach space X. Let t be an element of B(X), and let edenote the identity operator on X. Since the earliest days of the theory of Banach algebras, ithas been understood that the natural setting within which to study spectral properties of t is the Banach algebra B(X), or perhaps a closed subalgebra of B(X) containing t and e. The effective application of this method to a given class of operators depends upon first translating the data into terms involving only the Banach algebra structure of B(X) without reference to the underlying space X. In particular, the appropriate topology is the norm topology in B(X) given by the usual operator norm. Theorem 1 carries out this translation for the class of compact operators t. It is proved that if t is compact, then multiplication by t is a compact linear operator on the closed subalgebra of B(X) consisting of operators that commute with t.


2010 ◽  
Vol 8 (2) ◽  
pp. 167-179 ◽  
Author(s):  
R. L. Johnson ◽  
C. R. Warner

H1(R) is a Banach algebra which has better mapping properties under singular integrals thanL1(R) . We show that its approximate identity sequences are unbounded by constructing one unbounded approximate identity sequence {vn}. We introduce a Banach algebraQthat properly lies betweenH1andL1, and use it to show thatc(1 + lnn) ≤ ||vn||H1≤Cn1/2. We identify the maximal ideal space ofH1and give the appropriate version of Wiener's Tauberian theorem.


Sign in / Sign up

Export Citation Format

Share Document