Unisexuality and Molecular Drive: Bag320 Sequence Diversity in Bacillus Taxa (Insecta Phasmatodea)

2003 ◽  
Vol 56 (5) ◽  
pp. 587-596 ◽  
Author(s):  
Andrea Luchetti ◽  
Michele Cesari ◽  
Giuliano Carrara ◽  
Sandro Cavicchi ◽  
Marco Passamonti ◽  
...  
2014 ◽  
pp. 609-616 ◽  
Author(s):  
T. Beridze ◽  
I. Pipia ◽  
J. Beck ◽  
S.-C. Hsu ◽  
B. Schaal ◽  
...  

Genetics ◽  
1989 ◽  
Vol 121 (3) ◽  
pp. 539-550
Author(s):  
W C Black ◽  
D K McLain ◽  
K S Rai

Abstract A restriction map was constructed of the ribosomal cistron in a mosquito, Aedes albopictus (Skuse). The 18s, 28s and nontranscribed spacer (NTS) regions were subcloned and used to probe for intraspecific variation. Seventeen populations were examined throughout the world range of the species. No variation was detected in the coding regions but extensive and continuous variation existed in the NTS. The NTS consisted of two nonhomologous regions. The first region contained multiple 190-bp AluI repeats nested within larger XhoI repeats of various sizes. There was a large number of length variants in the AluI repeat region of the NTS. No repeats were found in the second region and it gave rise to relatively fewer variants. An analysis of NTS diversity in individual mosquitoes indicated that most of the diversity arose at the population level. Discriminant analysis was performed on spacer types in individual mosquitoes and demonstrated that individuals within a population carried a unique set of spacers. In contrast with studies of the NTS in Drosophila populations, there seems to be little conservation of spacers in a population. The importance of molecular drive relative to drift and selection in the generation of local population differentiation is discussed.


2021 ◽  
Vol 90 ◽  
pp. 104752
Author(s):  
Zaira Rehman ◽  
Massab Umair ◽  
Aamer Ikram ◽  
Afreenish Amir ◽  
Muhammad Salman
Keyword(s):  

2008 ◽  
Vol 74 (6) ◽  
pp. 1740-1747 ◽  
Author(s):  
Andrew Dopheide ◽  
Gavin Lear ◽  
Rebecca Stott ◽  
Gillian Lewis

ABSTRACT Free-living protozoa are thought to be of fundamental importance in aquatic ecosystems, but there is limited understanding of their diversity and ecological role, particularly in surface-associated communities such as biofilms. Existing eukaryote-specific PCR primers were used to survey 18S rRNA gene sequence diversity in stream biofilms but poorly revealed protozoan diversity, demonstrating a need for protozoan-targeted primers. Group-specific PCR primers targeting 18S rRNA genes of the protozoan phylum Ciliophora were therefore designed and tested using DNA extracted from cultured protozoan isolates. The two most reliable primer combinations were applied to stream biofilm DNA, followed by cloning and sequencing analysis. Of 44 clones derived from primer set 384F/1147R, 86% were of probable ciliate origin, as were 25% of 44 clones detected by primer set 121F/1147R. A further 29% of 121F/1147R-detected clones matched sequences from the closely related phylum Apicomplexa. The highly ciliate-specific primer set 384F/1147R was subsequently used in PCRs on biofilm DNA from four streams exhibiting different levels of human impact, revealing differences in ciliate sequence diversity in samples from each site. Of a total of 240 clones, 73% were of probable ciliate origin; 54 different putative ciliate sequences were detected from throughout seven taxonomic ciliate classes. Sequences from Oligohymenophorea were most commonly detected in all samples, followed by either Spirotrichea or Phyllopharyngea. Restriction fragment length polymorphism profile-based analysis of clones suggested a potentially higher level of diversity than did sequencing. Nevertheless, newly designed PCR primers 384F/1147R were considered to provide an effective molecular basis for characterization of ciliate diversity in stream biofilms.


Sign in / Sign up

Export Citation Format

Share Document