Phylogenetic Analysis of Evolutionary Relationships of the Planctomycete Division of the Domain Bacteria Based on Amino Acid Sequences of Elongation Factor Tu

2001 ◽  
Vol 52 (5) ◽  
pp. 405-418 ◽  
Author(s):  
Cheryl Jenkins ◽  
John A. Fuerst
1988 ◽  
Vol 1 ◽  
pp. 34-48 ◽  
Author(s):  
K.A. Joysey

It seems likely that I was invited to contribute to this course because I am a renegade geologist. Many years ago I was lured by the attractions of living animals and switched to zoology. Later I became interested in the possibility of using immunological methods to assess evolutionary relationships among shrews, moles, hedgehogs, tree-shrews, elephant-shrews, otter-shrews, golden-moles and tenrecs, and I set a graduate student onto this project. We also sought to explore the relationships between these so-called ‘Insectivora’ and other orders of mammals, using immunological techniques to estimate crude biochemical distances between the serum proteins of representative species.


2018 ◽  
Vol 44 (1) ◽  
pp. 20
Author(s):  
Eloiza Teles Caldart ◽  
Helena Mata ◽  
Cláudio Wageck Canal ◽  
Ana Paula Ravazzolo

Background: Phylogenetic analyses are an essential part in the exploratory assessment of nucleic acid and amino acid sequences. Particularly in virology, they are able to delineate the evolution and epidemiology of disease etiologic agents and/or the evolutionary path of their hosts. The objective of this review is to help researchers who want to use phylogenetic analyses as a tool in virology and molecular epidemiology studies, presenting the most commonly used methodologies, describing the importance of the different techniques, their peculiar vocabulary and some examples of their use in virology.Review: This article starts presenting basic concepts of molecular epidemiology and molecular evolution, emphasizing their relevance in the context of viral infectious diseases. It presents a session on the vocabulary relevant to the subject, bringing readers to a minimum level of knowledge needed throughout this literature review. Within its main subject, the text explains what a molecular phylogenetic analysis is, starting from a multiple alignment of nucleotide or amino acid sequences. The different software used to perform multiple alignments may apply different algorithms. To build a phylogeny based on amino acid or nucleotide sequences it is necessary to produce a data matrix based on a model for nucleotide or amino acid replacement, also called evolutionary model. There are a number of evolutionary models available, varying in complexity according to the number of parameters (transition, transversion, GC content, nucleotide position in the codon, among others). Some papers presented herein provide techniques that can be used to choose evolutionary models. After the model is chosen, the next step is to opt for a phylogenetic reconstruction method that best fits the available data and the selected model. Here we present the most common reconstruction methods currently used, describing their principles, advantages and disadvantages. Distance methods, for example, are simpler and faster, however, they do not provide reliable estimations when the sequences are highly divergent. The accuracy of the analysis with probabilistic models (neighbour joining, maximum likelihood and bayesian inference) strongly depends on the adherence of the actual data to the chosen development model. Finally, we also explore topology confidence tests, especially the most used one, the bootstrap. To assist the reader, this review presents figures to explain specific situations discussed in the text and numerous examples of previously published scientific articles in virology that demonstrate the importance of the techniques discussed herein, as well as their judicious use.Conclusion: The DNA sequence is not only a record of phylogeny and divergence times, but also keeps signs of how the evolutionary process has shaped its history and also the elapsed time in the evolutionary process of the population. Analyses of genomic sequences by molecular phylogeny have demonstrated a broad spectrum of applications. It is important to note that for the different available data and different purposes of phylogenies, reconstruction methods and evolutionary models should be wisely chosen. This review provides theoretical basis for the choice of evolutionary models and phylogenetic reconstruction methods best suited to each situation. In addition, it presents examples of diverse applications of molecular phylogeny in virology.


2012 ◽  
Vol 17 (4) ◽  
pp. 4-8
Author(s):  
A. S Klimentov ◽  
A. P Gmyl ◽  
A. M Butenko ◽  
L. V Gmyl ◽  
O. V Isaeva ◽  
...  

The nucleotide sequence of M= (1398 nucleotides and L= (6186 nucleotides) segments of the genome of Bhanja virus and L-segment (1297 nucleotides) of Kismayo virus has been partially determined. Phylogenetic analysis of deduced amino acid sequences showed that these viruses are novel members of the Flebovirus (Phlebovirus) genus in the family Bunyaviridae


Author(s):  
Sona. S Dev ◽  
P. Poornima ◽  
Akhil Venu

Eggplantor brinjal (Solanum melongena L.), is highly susceptible to various soil-borne diseases. The extensive use of chemical fungicides to combat these diseases can be minimized by identification of resistance gene analogs (RGAs) in wild species of cultivated plants.In the present study, degenerate PCR primers for the conserved regions ofnucleotide binding site-leucine rich repeat (NBS-LRR) were used to amplify RGAs from wild relatives of eggplant (Black nightshade (Solanum nigrum), Indian nightshade (Solanumviolaceum)and Solanu mincanum) which showed resistance to the bacterial wilt pathogen, Ralstonia solanacearumin the preliminary investigation. The amino acid sequence of the amplicons when compared to each other and to the amino acid sequences of known RGAs deposited in Gen Bank revealed significant sequence similarity. The phylogenetic analysis indicated that they belonged to the toll interleukin-1 receptors (TIR)-NBS-LRR type R-genes. Multiple sequence alignment with other known R genes showed significant homology with P-loop, Kinase 2 and GLPL domains of NBS-LRR class genes. There has been no report on R genes from these wild eggplants and hence the diversity analysis of these novel RGAs can lead to the identification of other novel R genes within the germplasm of different brinjal plants as well as other species of Solanum.


2006 ◽  
Vol 138 (2) ◽  
pp. 138-146 ◽  
Author(s):  
O. Mittapalli ◽  
R.H. Shukle ◽  
I.L. Wise

AbstractMariner-like element sequences were recovered from the genome of the orange wheat midge, Sitodiplosis mosellana (Géhin), with degenerate PCR primers designed to conserved regions of mariner transposases. The deduced amino acid sequences of the mariner-like transposases from S. mosellana showed 67% to 78% identity with the peptide sequences of other mariner transposases. A phylogenetic analysis revealed that the mariner-like elements from S. mosellana grouped in the mauritiana subfamily of mariner transposons. Results from Southern blot analysis suggest mariner-like elements are at a moderate copy number in the genome of S. mosellana.


Biochemistry ◽  
2004 ◽  
Vol 43 (20) ◽  
pp. 6159-6166 ◽  
Author(s):  
Taraka Dale ◽  
Lee E. Sanderson ◽  
Olke C. Uhlenbeck

Sign in / Sign up

Export Citation Format

Share Document