scholarly journals Inferring Species Trees from Gene Trees: A Phylogenetic Analysis of the Elapidae (Serpentes) Based on the Amino Acid Sequences of Venom Proteins

1997 ◽  
Vol 8 (3) ◽  
pp. 349-362 ◽  
Author(s):  
Joseph B Slowinski ◽  
Alec Knight ◽  
Alejandro P Rooney
2018 ◽  
Vol 44 (1) ◽  
pp. 20
Author(s):  
Eloiza Teles Caldart ◽  
Helena Mata ◽  
Cláudio Wageck Canal ◽  
Ana Paula Ravazzolo

Background: Phylogenetic analyses are an essential part in the exploratory assessment of nucleic acid and amino acid sequences. Particularly in virology, they are able to delineate the evolution and epidemiology of disease etiologic agents and/or the evolutionary path of their hosts. The objective of this review is to help researchers who want to use phylogenetic analyses as a tool in virology and molecular epidemiology studies, presenting the most commonly used methodologies, describing the importance of the different techniques, their peculiar vocabulary and some examples of their use in virology.Review: This article starts presenting basic concepts of molecular epidemiology and molecular evolution, emphasizing their relevance in the context of viral infectious diseases. It presents a session on the vocabulary relevant to the subject, bringing readers to a minimum level of knowledge needed throughout this literature review. Within its main subject, the text explains what a molecular phylogenetic analysis is, starting from a multiple alignment of nucleotide or amino acid sequences. The different software used to perform multiple alignments may apply different algorithms. To build a phylogeny based on amino acid or nucleotide sequences it is necessary to produce a data matrix based on a model for nucleotide or amino acid replacement, also called evolutionary model. There are a number of evolutionary models available, varying in complexity according to the number of parameters (transition, transversion, GC content, nucleotide position in the codon, among others). Some papers presented herein provide techniques that can be used to choose evolutionary models. After the model is chosen, the next step is to opt for a phylogenetic reconstruction method that best fits the available data and the selected model. Here we present the most common reconstruction methods currently used, describing their principles, advantages and disadvantages. Distance methods, for example, are simpler and faster, however, they do not provide reliable estimations when the sequences are highly divergent. The accuracy of the analysis with probabilistic models (neighbour joining, maximum likelihood and bayesian inference) strongly depends on the adherence of the actual data to the chosen development model. Finally, we also explore topology confidence tests, especially the most used one, the bootstrap. To assist the reader, this review presents figures to explain specific situations discussed in the text and numerous examples of previously published scientific articles in virology that demonstrate the importance of the techniques discussed herein, as well as their judicious use.Conclusion: The DNA sequence is not only a record of phylogeny and divergence times, but also keeps signs of how the evolutionary process has shaped its history and also the elapsed time in the evolutionary process of the population. Analyses of genomic sequences by molecular phylogeny have demonstrated a broad spectrum of applications. It is important to note that for the different available data and different purposes of phylogenies, reconstruction methods and evolutionary models should be wisely chosen. This review provides theoretical basis for the choice of evolutionary models and phylogenetic reconstruction methods best suited to each situation. In addition, it presents examples of diverse applications of molecular phylogeny in virology.


2012 ◽  
Vol 17 (4) ◽  
pp. 4-8
Author(s):  
A. S Klimentov ◽  
A. P Gmyl ◽  
A. M Butenko ◽  
L. V Gmyl ◽  
O. V Isaeva ◽  
...  

The nucleotide sequence of M= (1398 nucleotides and L= (6186 nucleotides) segments of the genome of Bhanja virus and L-segment (1297 nucleotides) of Kismayo virus has been partially determined. Phylogenetic analysis of deduced amino acid sequences showed that these viruses are novel members of the Flebovirus (Phlebovirus) genus in the family Bunyaviridae


Author(s):  
Sona. S Dev ◽  
P. Poornima ◽  
Akhil Venu

Eggplantor brinjal (Solanum melongena L.), is highly susceptible to various soil-borne diseases. The extensive use of chemical fungicides to combat these diseases can be minimized by identification of resistance gene analogs (RGAs) in wild species of cultivated plants.In the present study, degenerate PCR primers for the conserved regions ofnucleotide binding site-leucine rich repeat (NBS-LRR) were used to amplify RGAs from wild relatives of eggplant (Black nightshade (Solanum nigrum), Indian nightshade (Solanumviolaceum)and Solanu mincanum) which showed resistance to the bacterial wilt pathogen, Ralstonia solanacearumin the preliminary investigation. The amino acid sequence of the amplicons when compared to each other and to the amino acid sequences of known RGAs deposited in Gen Bank revealed significant sequence similarity. The phylogenetic analysis indicated that they belonged to the toll interleukin-1 receptors (TIR)-NBS-LRR type R-genes. Multiple sequence alignment with other known R genes showed significant homology with P-loop, Kinase 2 and GLPL domains of NBS-LRR class genes. There has been no report on R genes from these wild eggplants and hence the diversity analysis of these novel RGAs can lead to the identification of other novel R genes within the germplasm of different brinjal plants as well as other species of Solanum.


2006 ◽  
Vol 138 (2) ◽  
pp. 138-146 ◽  
Author(s):  
O. Mittapalli ◽  
R.H. Shukle ◽  
I.L. Wise

AbstractMariner-like element sequences were recovered from the genome of the orange wheat midge, Sitodiplosis mosellana (Géhin), with degenerate PCR primers designed to conserved regions of mariner transposases. The deduced amino acid sequences of the mariner-like transposases from S. mosellana showed 67% to 78% identity with the peptide sequences of other mariner transposases. A phylogenetic analysis revealed that the mariner-like elements from S. mosellana grouped in the mauritiana subfamily of mariner transposons. Results from Southern blot analysis suggest mariner-like elements are at a moderate copy number in the genome of S. mosellana.


2000 ◽  
Vol 46 (4) ◽  
pp. 325-332 ◽  
Author(s):  
Sanae Kato ◽  
Isao Yumoto

To examine the distribution of the Na+-translocating NADH-quinone reductase (Na+-NQR) among marine bacteria, we developed a simple screening method for the detection of this enzyme. By reference to the homologous sequences of the Na+-NQR operons from Vibrio alginolyticus and Haemophilus influenzae, a pair of primers was designed for amplification of a part of the sixth ORF (nqr6) of the Na+-NQR operon. When PCR was performed using genomic DNA from 13 marine bacteria, a 0.9-kbp fragment corresponding to nqr6 was amplified in 10 strains. Although there were three PCR-negative strains phylogenetically, based on the sequence of the 16S rRNA, these were placed far from the PCR-positive strains. No product was observed in the case of nonmarine bacteria. The nucleotide and predicted amino acid sequences of nqr6 were highly conserved among the PCR-positive marine bacteria. A phylogenetic analysis of marine bacteria, based on nqr6 sequencing, was performed.Key words: Na+-translocating, NADH-quinone reductase, marine bacteria, PCR.


Parasitology ◽  
2015 ◽  
Vol 142 (11) ◽  
pp. 1387-1397 ◽  
Author(s):  
GUIQUAN GUAN ◽  
JUNLONG LIU ◽  
AIHONG LIU ◽  
YOUQUAN LI ◽  
QINGLI NIU ◽  
...  

SUMMARYHeat shock protein 90 (HSP90) is a key component of the molecular chaperone complex essential for activating many signalling proteins involved in the development and progression of pathogenic cellular transformation. AHsp90gene (BQHsp90) was cloned and characterized fromBabesiasp. BQ1 (Lintan), an ovineBabesiaisolate belonging toBabesia motasi-like group, by screening a cDNA expression library and performing rapid amplification of cDNA ends. The full-length cDNA ofBQHsp90is 2399 bp with an open reading frame of 2154 bp encoding a predicted 83 kDa polypeptide with 717 amino acid residues. It shows significant homology and similar structural characteristics toHsp90of other apicomplex organisms. Phylogenetic analysis, based on the HSP90 amino acid sequences, showed that theBabesiagenus is clearly separated from other apicomplexa genera. Five Chinese ovineBabesiaisolates were divided into 2 phylogenetic clusters, namelyBabesiasp. Xinjiang (previously designated a new species) cluster andB. motasi-like cluster which could be further divided into 2 subclusters (Babesiasp. BQ1 (Lintan)/Babesiasp. Tianzhu andBabesiasp. BQ1 (Ningxian)/Babesiasp. Hebei). Finally, the antigenicity of rBQHSP90 protein from prokaryotic expression was also evaluated using western blot and enzyme-linked immunosorbent assay (ELISA).


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6465 ◽  
Author(s):  
James M. Wainaina ◽  
Elijah Ateka ◽  
Timothy Makori ◽  
Monica A. Kehoe ◽  
Laura M. Boykin

Common bean (Phaseolus vulgaris L.) is the primary source of protein and nutrients in the majority of households in sub-Saharan Africa. However, pests and viral diseases are key drivers in the reduction of bean production. To date, the majority of viruses reported in beans have been RNA viruses. In this study, we carried out a viral metagenomic analysis on virus symptomatic bean plants. Our virus detection pipeline identified three viral fragments of the double-stranded DNA virus Pelargonium vein banding virus (PVBV) (family, Caulimoviridae, genus Badnavirus). This is the first report of the dsDNA virus and specifically PVBV in legumes to our knowledge. In addition two previously reported +ssRNA viruses the bean common mosaic necrosis virus (BCMNVA) (Potyviridae) and aphid lethal paralysis virus (ALPV) (Dicistroviridae) were identified. Bayesian phylogenetic analysis of the Badnavirus (PVBV) using amino acid sequences of the RT/RNA-dependent DNA polymerase region showed the Kenyan sequence (SRF019_MK014483) was closely matched with two Badnavirus viruses: Dracaena mottle virus (DrMV) (YP_610965) and Lucky bamboo bacilliform virus (ABR01170). Phylogenetic analysis of BCMNVA was based on amino acid sequences of the Nib region. The BCMNVA phylogenetic tree resolved two clades identified as clade (I and II). Sequence from this study SRF35_MK014482, clustered within clade I with other Kenyan sequences. Conversely, Bayesian phylogenetic analysis of ALPV was based on nucleotide sequences of the hypothetical protein gene 1 and 2. Three main clades were resolved and identified as clades I–III. The Kenyan sequence from this study (SRF35_MK014481) clustered within clade II, and nested within a sub-clade; comprising of sequences from China and an earlier ALPV sequences from Kenya isolated from maize (MF458892). Our findings support the use of viral metagenomics to reveal the nascent viruses, their viral diversity and evolutionary history of these viruses. The detection of ALPV and PVBV indicate that these viruses have likely been underreported due to the unavailability of diagnostic tools.


2021 ◽  
Author(s):  
Samira Mokhtari ◽  
Akhtar Ali

Abstract A double-stranded RNA (dsRNA) mycovirus was isolated from airborne spores of Fusarium bullatum and was named Fusarium bullatum alternavirus 1 (FbAV1). Sequencing analysis and the rapid amplification of cDNA ends (RACE) of 5’ and 3’-end confirmed three segments: dsRNA1 (3546 nt), dsRNA2 (2511 nt) and dsRNA3 (2484 nt). BLASTN search of sequences showed that FbAV1 has 92-96% identity with Fusarium incarnatum Alternavirus 1 (FiAV1). Phylogenetic analysis of the RdRp amino acid sequences suggested that the dsRNA mycovirus in this study clustered with the newly proposed family “Alternaviridae”. This is the first report of FbAV1 mycovirus from airborne spores of a fungus F. bullatum.


Sign in / Sign up

Export Citation Format

Share Document