scholarly journals Phylogenetic Diversity and Spatial Distribution of the Microbial Community Associated with the Caribbean Deep-water Sponge Polymastia cf. corticata by 16S rRNA, aprA, and amoA Gene Analysis

2008 ◽  
Vol 56 (2) ◽  
pp. 306-321 ◽  
Author(s):  
Birte Meyer ◽  
Jan Kuever
Microbiology ◽  
1998 ◽  
Vol 144 (9) ◽  
pp. 2655-2665 ◽  
Author(s):  
Y. Sekiguchi ◽  
Y. Kamagata ◽  
K. Syutsubo ◽  
A. Ohashi ◽  
H. Harada ◽  
...  

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Benjamin J. Callahan ◽  
Dmitry Grinevich ◽  
Siddhartha Thakur ◽  
Michael A. Balamotis ◽  
Tuval Ben Yehezkel

Abstract Background Out of the many pathogenic bacterial species that are known, only a fraction are readily identifiable directly from a complex microbial community using standard next generation DNA sequencing. Long-read sequencing offers the potential to identify a wider range of species and to differentiate between strains within a species, but attaining sufficient accuracy in complex metagenomes remains a challenge. Methods Here, we describe and analytically validate LoopSeq, a commercially available synthetic long-read (SLR) sequencing technology that generates highly accurate long reads from standard short reads. Results LoopSeq reads are sufficiently long and accurate to identify microbial genes and species directly from complex samples. LoopSeq perfectly recovered the full diversity of 16S rRNA genes from known strains in a synthetic microbial community. Full-length LoopSeq reads had a per-base error rate of 0.005%, which exceeds the accuracy reported for other long-read sequencing technologies. 18S-ITS and genomic sequencing of fungal and bacterial isolates confirmed that LoopSeq sequencing maintains that accuracy for reads up to 6 kb in length. LoopSeq full-length 16S rRNA reads could accurately classify organisms down to the species level in rinsate from retail meat samples, and could differentiate strains within species identified by the CDC as potential foodborne pathogens. Conclusions The order-of-magnitude improvement in length and accuracy over standard Illumina amplicon sequencing achieved with LoopSeq enables accurate species-level and strain identification from complex- to low-biomass microbiome samples. The ability to generate accurate and long microbiome sequencing reads using standard short read sequencers will accelerate the building of quality microbial sequence databases and removes a significant hurdle on the path to precision microbial genomics.


2020 ◽  
Vol 148 ◽  
pp. 01002
Author(s):  
Herto Dwi Ariesyady ◽  
Mentari Rizki Mayanda ◽  
Tsukasa Ito

Activated sludge process is one of the wastewater treatment method that is applied for many wastewater types including painting process wastewater of automotive industry. This wastewater is well-known to have high heavy metals concentration which could deteriorate water environment if appropriate performance of the wastewater treatment could not be achieved. In this study, we monitored microbial community diversity in a Painting Biological Treatment (PBT) system. We applied a combination of cultivation and genotypic biological methods based on 16S rRNA gene sequence analysis to identify the diversity of active microbial community. The results showed that active microbes that could grow in this activated sludge system were dominated by Gram-negative bacteria. Based on 16S rRNA gene sequencing analysis, it was revealed that their microbial diversity has close association with Bacterium strain E286, Isosphaera pallida, Lycinibacillus fusiformis, Microbacterium sp., Orchobactrum sp., Pseudomonas guariconensis, Pseudomonas sp. strain MR84, Pseudomonas sp. MC 54, Serpens sp., Stenotrophomonas acidaminiphila, and Xylella fastidiosa with similarity of 86 – 99%. This findings reflects that microbial community in a Painting Biological Treatment (PBT) system using activated sludge process could adapt with xenobiotics in the wastewater and has a wide range of diversity indicating a complex metabolism mechanism in the treatment process.


2009 ◽  
Vol 75 (12) ◽  
pp. 4139-4148 ◽  
Author(s):  
James P. Davis ◽  
Noha H. Youssef ◽  
Mostafa S. Elshahed

ABSTRACT We used a combination of 16S rRNA gene clone library surveys, quantitative PCR (qPCR) analysis, and fluorescent in situ hybridization to investigate the diversity, abundance, and distribution of members of candidate division SR1 in multiple habitats. Using SR1-specific 16S rRNA gene primers, we identified multiple novel SR1 lineages in four different anaerobic environments: sediments from Zodletone Spring, a sulfide- and sulfur-rich spring in southwestern Oklahoma; inner layers of microbial mats obtained from Sperm Pool, a high-temperature, low-pH pool (55°C, pH 2.5) in Yellowstone National Park; fresh bovine ruminal contents; and anaerobic freshwater pond sediments (Duck Pond) in Norman, Oklahoma. qPCR analysis indicated that SR1 members constitute a small fraction (<0.01%) of the microbial communities in Duck Pond and ruminal samples but constitute a significant fraction (11.6 and 48.7%) of the total number of bacterial 16S rRNA genes in Zodletone Spring and the inner layers of Sperm Pool microbial mat samples, respectively. By using SR1-specific fluorescent probes, filamentous cells were identified as the sole SR1 morphotype in all environments examined, with the exception of Sperm Pool, where a second bacillus morphotype was also identified. Using a full-cycle 16S rRNA approach, we show that each of these two morphotypes corresponds to a specific phylogenetic lineage identified in the Sperm Pool clone library. This work greatly expands the intralineage phylogenetic diversity within candidate division SR1 and provides valuable quantification and visualization tools that could be used for investigating the ecological roles, dynamics, and genomics of this as-yet-uncultured bacterial phylum.


2014 ◽  
Vol 48 (8) ◽  
pp. 717-728 ◽  
Author(s):  
M. N. Zakaria ◽  
T. Takeshita ◽  
Y. Shibata ◽  
H. Maeda ◽  
N. Wada ◽  
...  

2008 ◽  
Vol 74 (13) ◽  
pp. 3969-3976 ◽  
Author(s):  
Jingrang Lu ◽  
Jorge W. Santo Domingo ◽  
Regina Lamendella ◽  
Thomas Edge ◽  
Stephen Hill

ABSTRACT In spite of increasing public health concerns about the potential risks associated with swimming in waters contaminated with waterfowl feces, little is known about the composition of the gut microbial community of aquatic birds. To address this, a gull 16S rRNA gene clone library was developed and analyzed to determine the identities of fecal bacteria. Analysis of 282 16S rRNA gene clones demonstrated that the gull gut bacterial community is mostly composed of populations closely related to Bacilli (37%), Clostridia (17%), Gammaproteobacteria (11%), and Bacteriodetes (1%). Interestingly, a considerable number of sequences (i.e., 26%) were closely related to Catellicoccus marimammalium, a gram-positive, catalase-negative bacterium. To determine the occurrence of C. marimammalium in waterfowl, species-specific 16S rRNA gene PCR and real-time assays were developed and used to test fecal DNA extracts from different bird (n = 13) and mammal (n = 26) species. The results showed that both assays were specific to gull fecal DNA and that C. marimammalium was present in gull fecal samples collected from the five locations in North America (California, Georgia, Ohio, Wisconsin, and Toronto, Canada) tested. Additionally, 48 DNA extracts from waters collected from six sites in southern California, Great Lakes in Michigan, Lake Erie in Ohio, and Lake Ontario in Canada presumed to be impacted with gull feces were positive by the C. marimammalium assay. Due to the widespread presence of this species in gulls and environmental waters contaminated with gull feces, targeting this bacterial species might be useful for detecting gull fecal contamination in waterfowl-impacted waters.


Sign in / Sign up

Export Citation Format

Share Document