Ethnic differences in allelic associations of the interleukin-1 gene cluster in South African patients with inflammatory bowel disease (IBD) and in control individuals

2001 ◽  
Vol 52 (3-4) ◽  
pp. 249-254 ◽  
Author(s):  
Mark Barkhuizen ◽  
Obedy Mwantembe ◽  
Visva Pillay ◽  
Shaun D. Berry ◽  
John B. Dewar ◽  
...  
2003 ◽  
Vol 124 (4) ◽  
pp. A373 ◽  
Author(s):  
Monique G. Zaahl ◽  
Trevor Winter ◽  
Armand Peeters ◽  
Tessa Marks ◽  
Louise Warnich ◽  
...  

1994 ◽  
Vol 39 (9) ◽  
pp. 1893-1899 ◽  
Author(s):  
Jeffrey S. Hyams ◽  
John E. Fitzgerald ◽  
Nancy Wyzga ◽  
William R. Treem ◽  
Christopher J. Justinich ◽  
...  

CNS Spectrums ◽  
2015 ◽  
Vol 21 (2) ◽  
pp. 184-198 ◽  
Author(s):  
Marta Martin-Subero ◽  
George Anderson ◽  
Buranee Kanchanatawan ◽  
Michael Berk ◽  
Michael Maes

The nature of depression has recently been reconceptualized, being conceived as the clinical expression of activated immune-inflammatory, oxidative, and nitrosative stress (IO&NS) pathways, including tryptophan catabolite (TRYCAT), autoimmune, and gut–brain pathways. IO&NS pathways are similarly integral to the pathogenesis of inflammatory bowel disease (IBD). The increased depression prevalence in IBD associates with a lower quality of life and increased morbidity in IBD, highlighting the role of depression in modulating the pathophysiology of IBD.This review covers data within such a wider conceptualization that better explains the heightened co-occurrence of IBD and depression. Common IO&NS underpinning between both disorders is evidenced by increased pro-inflammatory cytokine levels, eg, interleukin-1 (IL-1) and tumor necrosis factor-α, IL-6 trans-signalling; Th-1- and Th-17-like responses; neopterin and soluble IL-2 receptor levels; positive acute phase reactants (haptoglobin and C-reactive protein); lowered levels of negative acute phase reactants (albumin, transferrin, zinc) and anti-inflammatory cytokines (IL-10 and transforming growth factor-β); increased O&NS with damage to lipids, proteinsm and DNA; increased production of nitric oxide (NO) and inducible NO synthase; lowered plasma tryptophan but increased TRYCAT levels; autoimmune responses; and increased bacterial translocation. As such, heightened IO&NS processes in depression overlap with the biological underpinnings of IBD, potentially explaining their increased co-occurrence. This supports the perspective that there is a spectrum of IO&NS disorders that includes depression, both as an emergent comorbidity and as a contributor to IO&NS processes. Such a frame of reference has treatment implications for IBD when “comorbid” with depression.


mSystems ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Maria I. Rojas ◽  
Giselle S. Cavalcanti ◽  
Katelyn McNair ◽  
Sean Benler ◽  
Amanda T. Alker ◽  
...  

ABSTRACT Many commensal bacteria antagonize each other or their host by producing syringe-like secretion systems called contractile injection systems (CIS). Members of the Bacteroidales family have been shown to produce only one type of CIS—a contact-dependent type 6 secretion system that mediates bacterium-bacterium interactions. Here, we show that a second distinct cluster of genes from Bacteroidales bacteria from the human microbiome may encode yet-uncharacterized injection systems that we term Bacteroidales injection systems (BIS). We found that BIS genes are present in the gut microbiomes of 99% of individuals from the United States and Europe and that BIS genes are more prevalent in the gut microbiomes of healthy individuals than in those individuals suffering from inflammatory bowel disease. Gene clusters similar to that of the BIS mediate interactions between bacteria and diverse eukaryotes, like amoeba, insects, and tubeworms. Our findings highlight the ubiquity of the BIS gene cluster in the human gut and emphasize the relevance of the gut microbiome to the human host. These results warrant investigations into the structure and function of the BIS and how they might mediate interactions between Bacteroidales bacteria and the human host or microbiome. IMPORTANCE To engage with host cells, diverse pathogenic bacteria produce syringe-like structures called contractile injection systems (CIS). CIS are evolutionarily related to the contractile tails of bacteriophages and are specialized to puncture membranes, often delivering effectors to target cells. Although CIS are key for pathogens to cause disease, paradoxically, similar injection systems have been identified within healthy human microbiome bacteria. Here, we show that gene clusters encoding a predicted CIS, which we term Bacteroidales injection systems (BIS), are present in the microbiomes of nearly all adult humans tested from Western countries. BIS genes are enriched within human gut microbiomes and are expressed both in vitro and in vivo. Further, a greater abundance of BIS genes is present within healthy gut microbiomes than in those humans with with inflammatory bowel disease (IBD). Our discovery provides a potentially distinct means by which our microbiome interacts with the human host or its microbiome.


Sign in / Sign up

Export Citation Format

Share Document