scholarly journals Biotechnological and in situ food production of polyols by lactic acid bacteria

2013 ◽  
Vol 97 (11) ◽  
pp. 4713-4726 ◽  
Author(s):  
Maria Eugenia Ortiz ◽  
Juliana Bleckwedel ◽  
Raúl R. Raya ◽  
Fernanda Mozzi
Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 156
Author(s):  
Dominika Jurášková ◽  
Susana C. Ribeiro ◽  
Celia C. G. Silva

The production of exopolysaccharides (EPS) by lactic acid bacteria (LAB) has attracted particular interest in the food industry. EPS can be considered as natural biothickeners as they are produced in situ by LAB and improve the rheological properties of fermented foods. Moreover, much research has been conducted on the beneficial effects of EPS produced by LAB on modulating the gut microbiome and promoting health. The EPS, which varies widely in composition and structure, may have diverse health effects, such as glycemic control, calcium and magnesium absorption, cholesterol-lowering, anticarcinogenic, immunomodulatory, and antioxidant effects. In this article, the latest advances on structure, biosynthesis, and physicochemical properties of LAB-derived EPS are described in detail. This is followed by a summary of up-to-date methods used to detect, characterize and elucidate the structure of EPS produced by LAB. In addition, current strategies on the use of LAB-produced EPS in food products have been discussed, focusing on beneficial applications in dairy products, gluten-free bakery products, and low-fat meat products, as they positively influence the consistency, stability, and quality of the final product. Highlighting is also placed on reports of health-promoting effects, with particular emphasis on prebiotic, immunomodulatory, antioxidant, cholesterol-lowering, anti-biofilm, antimicrobial, anticancer, and drug-delivery activities.


Author(s):  
Monika Yadav ◽  
Ishu Khangwal ◽  
Guddu Kumar Gupta ◽  
Pratyoosh Shukla

Beverages ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 16 ◽  
Author(s):  
Valery Ripari

This review describes the technical and functional role of exopolysaccharides (EPSs) in cereal-based, yogurt-like beverages. Many microorganisms produce EPSs as a strategy for growing, adhering to solid surfaces, and surviving under adverse conditions. In several food and beverages, EPSs play technical and functional roles. Therefore, EPSs can be isolated, purified, and added to the product, or appropriate bacteria can be employed as starter cultures to produce the EPSs in situ within the matrix. The exploitation of in situ production of EPSs is of particular interest to manufacturers of cereal-base beverages aiming to mimic dairy products. In this review, traditional and innovative or experimental cereal-based beverages, and in particular, yogurt-like beverages are described with a particular focus in lactic acid bacteria (LAB’s) EPS production. The aim of this review is to present an overview of the current knowledge of exopolysaccharides produced by lactic acid bacteria, and their presence in cereal-based, yogurt-like beverages.


Sign in / Sign up

Export Citation Format

Share Document