Deletion of regulator-encoding genes fadR, fabR and iclR to increase L-threonine production in Escherichia coli

2019 ◽  
Vol 103 (11) ◽  
pp. 4549-4564 ◽  
Author(s):  
Jun Yang ◽  
Yu Fang ◽  
Jianli Wang ◽  
Chenhui Wang ◽  
Lei Zhao ◽  
...  
2012 ◽  
Vol 79 (1) ◽  
pp. 411-414 ◽  
Author(s):  
Afonso G. Abreu ◽  
Vanessa Bueris ◽  
Tatiane M. Porangaba ◽  
Marcelo P. Sircili ◽  
Fernando Navarro-Garcia ◽  
...  

ABSTRACTAutotransporter (AT) protein-encoding genes of diarrheagenicEscherichia coli(DEC) pathotypes (cah,eatA,ehaABCDJ,espC,espI,espP,pet,pic,sat, andtibA) were detected in typical and atypical enteropathogenicE. coli(EPEC) in frequencies between 0.8% and 39.3%. Although these ATs have been described in particular DEC pathotypes, their presence in EPEC indicates that they should not be considered specific virulence markers.


2014 ◽  
Vol 58 (9) ◽  
pp. 5589-5593 ◽  
Author(s):  
Anna L. Sartor ◽  
Muhammad W. Raza ◽  
Shahid A. Abbasi ◽  
Kathryn M. Day ◽  
John D. Perry ◽  
...  

ABSTRACTThe molecular epidemiology of 66 NDM-producing isolates from 2 Pakistani hospitals was investigated, with their genetic relatedness determined using repetitive sequence-based PCR (Rep-PCR). PCR-based replicon typing and screening for antibiotic resistance genes encoding carbapenemases, other β-lactamases, and 16S methylases were also performed. Rep-PCR suggested a clonal spread ofEnterobacter cloacaeandEscherichia coli. A number of plasmid replicon types were identified, with the incompatibility A/C group (IncA/C) being the most common (78%). 16S methylase-encoding genes were coharbored in 81% of NDM-producingEnterobacteriaceae.


2021 ◽  
Author(s):  
Amir Emami ◽  
Neda Pirbonyeh ◽  
Fatemeh Javanmardi ◽  
Abdollah Bazargani ◽  
Afagh Moattari ◽  
...  

Aim: To differentiate Escherichia coli isolates from diarrheal pediatric patients in clinical laboratories. Materials & methods: Patients with watery diarrhea were selected for sampling and tested for Diarrheagenic E. coli (DEC) by API kit. DEC isolates were tested for phylotyping, pathotyping and presence of determined virulence-encoding genes by specific molecular methods. Results: About 50% of isolates were detected as DECs (>55 and >31% were categorized B2 and D phylotypes respectively). Enterotoxigenic E. coli was the most and Enteroinvasive E. coli was the lowest prevalent pathotypes. csg and fim genes were the most present virulence factors. Conclusion: Typing of E. coli isolates from stool specimens will help to determine the diversity of diarrheal pathogens and take proper decisions to reduce the health burden of diarrheal diseases.


2019 ◽  
Vol 230 ◽  
pp. 228-234 ◽  
Author(s):  
María Valeria Rumi ◽  
Javier Mas ◽  
Alan Elena ◽  
Louise Cerdeira ◽  
Maria E. Muñoz ◽  
...  

2019 ◽  
Vol 10 ◽  
Author(s):  
Tianpeng Chen ◽  
Na Liu ◽  
Peifang Ren ◽  
Xun Xi ◽  
Leyun Yang ◽  
...  

2020 ◽  
Vol 8 (10) ◽  
pp. 1487
Author(s):  
Marta Aires-de-Sousa ◽  
Claudine Fournier ◽  
Elizeth Lopes ◽  
Hermínia de Lencastre ◽  
Patrice Nordmann ◽  
...  

In order to evaluate whether seagulls living on the Lisbon coastline, Portugal, might be colonized and consequently represent potential spreaders of multidrug-resistant bacteria, a total of 88 gull fecal samples were screened for detection of extended-spectrum β-lactamase (ESBL)- or carbapenemase-producing Enterobacteriaceae for methicillin-resistant Staphylococcus aureus (MRSA) and for vancomycin-resistant Enterococci (VRE). A large proportion of samples yielded carbapenemase- or ESBL-producing Enterobacteriaceae (16% and 55%, respectively), while only two MRSA and two VRE were detected. Mating-out assays followed by PCR and whole-plasmid sequencing allowed to identify carbapenemase and ESBL encoding genes. Among 24 carbapenemase-producing isolates, there were mainly Klebsiella pneumoniae (50%) and Escherichia coli (33%). OXA-181 was the most common carbapenemase identified (54%), followed by OXA-48 (25%) and KPC-2 (17%). Ten different ESBLs were found among 62 ESBL-producing isolates, mainly being CTX-M-type enzymes (87%). Co-occurrence in single samples of multiple ESBL- and carbapenemase producers belonging to different bacterial species was observed in some cases. Seagulls constitute an important source for spreading multidrug-resistant bacteria in the environment and their gut microbiota a formidable microenvironment for transfer of resistance genes within bacterial species.


Microbiology ◽  
2010 ◽  
Vol 156 (8) ◽  
pp. 2459-2469 ◽  
Author(s):  
Timothy J. Wells ◽  
Makrina Totsika ◽  
Mark A. Schembri

Autotransporter (AT) proteins are found in all Escherichia coli pathotypes and are often associated with virulence. In this study we took advantage of the large number of available E. coli genome sequences to perform an in-depth bioinformatic analysis of AT-encoding genes. Twenty-eight E. coli genome sequences were probed using an iterative approach, which revealed a total of 215 AT-encoding sequences that represented three major groups of distinct domain architecture: (i) serine protease AT proteins, (ii) trimeric AT adhesins and (iii) AIDA-I-type AT proteins. A number of subgroups were identified within each broad category, and most subgroups contained at least one characterized AT protein; however, seven subgroups contained no previously described proteins. The AIDA-I-type AT proteins represented the largest and most diverse group, with up to 16 subgroups identified from sequence-based comparisons. Nine of the AIDA-I-type AT protein subgroups contained at least one protein that possessed functional properties associated with aggregation and/or biofilm formation, suggesting a high degree of redundancy for this phenotype. The Ag43, YfaL/EhaC, EhaB/UpaC and UpaG subgroups were found in nearly all E. coli strains. Among the remaining subgroups, there was a tendency for AT proteins to be associated with individual E. coli pathotypes, suggesting that they contribute to tissue tropism or symptoms specific to different disease outcomes.


Sign in / Sign up

Export Citation Format

Share Document