A pH-responsive genetic sensor for the dynamic regulation of D-xylonic acid accumulation in Escherichia coli

2020 ◽  
Vol 104 (5) ◽  
pp. 2097-2108
Author(s):  
Angelo B. Bañares ◽  
Kris Niño G. Valdehuesa ◽  
Kristine Rose M. Ramos ◽  
Grace M. Nisola ◽  
Won-Keun Lee ◽  
...  
2020 ◽  
Vol 104 (5) ◽  
pp. 2273-2274
Author(s):  
Angelo B. Bañares ◽  
Kris Niño G. Valdehuesa ◽  
Kristine Rose M. Ramos ◽  
Grace M. Nisola ◽  
Won-Keun Lee ◽  
...  

2017 ◽  
Vol 474 (8) ◽  
pp. 1395-1416 ◽  
Author(s):  
Cora Lilia Alvarez ◽  
Gerardo Corradi ◽  
Natalia Lauri ◽  
Irene Marginedas-Freixa ◽  
María Florencia Leal Denis ◽  
...  

We studied the kinetics of extracellular ATP (ATPe) in Escherichia coli and their outer membrane vesicles (OMVs) stimulated with amphipatic peptides melittin (MEL) and mastoparan 7 (MST7). Real-time luminometry was used to measure ATPe kinetics, ATP release, and ATPase activity. The latter was also determined by following [32P]Pi released from [γ-32P]ATP. E. coli was studied alone, co-incubated with Caco-2 cells, or in rat jejunum segments. In E. coli, the addition of [γ-32P]ATP led to the uptake and subsequent hydrolysis of ATPe. Exposure to peptides caused an acute 3-fold (MST7) and 7-fold (MEL) increase in [ATPe]. In OMVs, ATPase activity increased linearly with [ATPe] (0.1–1 µM). Exposure to MST7 and MEL enhanced ATP release by 3–7 fold, with similar kinetics to that of bacteria. In Caco-2 cells, the addition of ATP to the apical domain led to a steep [ATPe] increase to a maximum, with subsequent ATPase activity. The addition of bacterial suspensions led to a 6–7 fold increase in [ATPe], followed by an acute decrease. In perfused jejunum segments, exposure to E. coli increased luminal ATP 2 fold. ATPe regulation of E. coli depends on the balance between ATPase activity and ATP release. This balance can be altered by OMVs, which display their own capacity to regulate ATPe. E. coli can activate ATP release from Caco-2 cells and intestinal segments, a response which in vivo might lead to intestinal release of ATP from the gut lumen.


2011 ◽  
Vol 11 (1) ◽  
pp. 74 ◽  
Author(s):  
Larissa Tetsch ◽  
Christiane Koller ◽  
Alexandra Dönhöfer ◽  
Kirsten Jung

Microbiology ◽  
2014 ◽  
Vol 160 (6) ◽  
pp. 1214-1223 ◽  
Author(s):  
Orawan Borirak ◽  
Martijn Bekker ◽  
Klaas J. Hellingwerf

We report on the use of the chemostat as an optimal device to create time-invariant conditions that allow accurate sampling for various omics assays in Escherichia coli, in combination with recording of the dynamics of the physiological transition in the organism under study that accompany the initiation of glucose repression. E. coli cells respond to the addition of glucose not only with the well-known transcriptional response, as was revealed through quantitative PCR analysis of the transcript levels of key genes from the CRP (cAMP receptor protein) regulon, but also with an increased growth rate and a transient decrease in the efficiency of its aerobic catabolism. Less than half of a doubling time is required for the organism to recover to maximal values of growth rate and efficiency. Furthermore, calculations based on our results show that the specific glucose uptake rate (qs ) and the H+/e− ratio increase proportionally, up to a growth rate of 0.4 h–1, whilst biomass yield on glucose (Yx / s ) drops during the first 15 min, followed by a gradual recovery. Surprisingly, the growth yields after the recovery phase show values even higher than the maximum theoretical yield. Possible explanations for these high yields are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nuria Carpena ◽  
Kerry Richards ◽  
Teresita D. J. Bello Gonzalez ◽  
Alberto Bravo-Blas ◽  
Nicholas G. Housden ◽  
...  

Bacteriocins are narrow-spectrum protein antibiotics that could potentially be used to engineer the human gut microbiota. However, technologies for targeted delivery of proteins to the lower gastrointestinal (GI) tract in preclinical animal models are currently lacking. In this work, we have developed methods for the microencapsulation of Escherichia coli targeting bacteriocins, colicin E9 and Ia, in a pH responsive formulation to allow their targeted delivery and controlled release in an in vivo murine model of E. coli colonization. Membrane emulsification was used to produce a water-in-oil emulsion with the water-soluble polymer subsequently cross-linked to produce hydrogel microcapsules. The microcapsule fabrication process allowed control of the size of the drug delivery system and a near 100% yield of the encapsulated therapeutic cargo. pH-triggered release of the encapsulated colicins was achieved using a widely available pH-responsive anionic copolymer in combination with alginate biopolymers. In vivo experiments using a murine E. coli intestinal colonization model demonstrated that oral delivery of the encapsulated colicins resulted in a significant decrease in intestinal colonization and reduction in E. coli shedding in the feces of the animals. Employing controlled release drug delivery systems such as that described here is essential to enable delivery of new protein therapeutics or other biological interventions for testing within small animal models of infection. Such approaches may have considerable value for the future development of strategies to engineer the human gut microbiota, which is central to health and disease.


2019 ◽  
Vol 803 ◽  
pp. 172-177
Author(s):  
Patcharapong Teawprasong ◽  
Duangporn Polpanich ◽  
Venusrin Paripurana ◽  
Goragot Supanakon ◽  
Kulachart Jangpatarapongsa

pH-responsive nanoparticle (PRNP) is one of the most thoroughly studied encapsulation systems in the field of nanomedicine especially therapeutic approaches, due to their controllable reaction in the particular range of pH. Herein, we aim at utilizing PRNPs to enhance efficacy of Magnetic Nanoparticles PCR Enzyme-Linked Gene Assay (MELGA). MELGA is originally based on polymerase chain reaction (PCR) and has been reported as the advanced technique developed for the detection of target gene at femtogram level. With the coupling magnetic nanoparticles (MNPs) as product enriching unit with biotin as a signal reporting unit, MELGA technique showed significantly improved sensitivity and specificity when compared to the conventional PCR in the study of detection enterotoxigenic Escherichia coli (ETEC), the major cause of traveler’s diarrhea and diarrhea in children. Nevertheless, it is challenging to further modify MELGA for faster turnaround time by reducing steps in procedure. Therefore, this proposed technique called PRNP-modified MELGA has been invented by producing indicator loaded PRNPs to replace biotin in order to cut enzyme-substrate reaction off. In the present study, synthesized PRNPs are composed of mesoporous silica nanomaterials (MSNs) loaded with indicator throughout their mesoporous structure and coated with the pH-responsive polymer as “Gate Keeper” or outer shell molecule which is supposed to swell at pH of response and release indicator for reporting. The comparison of candidates for outer shell molecules between poly dopamine (PDA) and chitosan (CH) was carried out by characterizing the pH-responsive behaviors. Results show that at pH of response (pH = 1.2 and 2.2), PRNPs coated with CH exhibited shaper releasing behavior than that that of the one coated with PDA. It is highly anticipated that this developing technique will be a tool towards a successful molecular assay for various diagnosis.


Sign in / Sign up

Export Citation Format

Share Document