Enrichment of beneficial rhizosphere microbes in Chinese wheat yellow mosaic virus-resistant cultivars

Author(s):  
Chuanfa Wu ◽  
Fangyan Wang ◽  
Haoqing Zhang ◽  
Guixian Chen ◽  
Yangwu Deng ◽  
...  
Plant Disease ◽  
2018 ◽  
Vol 102 (5) ◽  
pp. 948-954 ◽  
Author(s):  
Yu Xu ◽  
Lifeng Hu ◽  
Linying Li ◽  
Yan Zhang ◽  
Bingjian Sun ◽  
...  

Polymyxa graminis is an obligate parasite and important vector of more than 14 soilborne plant viruses that pose a significant threat to cereal crops in Europe, North America, and Asia. Different ribotypes or formae speciales of P. graminis have been recognized and these may be associated with different cereal hosts or with transmission of different viruses. Two soilborne viruses infecting winter wheat in China have been reported and well studied (Wheat yellow mosaic virus [WYMV, genus Bymovirus] and Chinese wheat mosaic virus [CWMV, genus Furovirus]) but there has been no reported characterization of P. graminis isolates associated with them. In this study, the ribosomal DNA internal transcribed spacer (ITS) regions of P. graminis were examined from 63 wheat samples with apparent virus symptoms obtained from 16 sites within six Chinese provinces. Their associations with soilborne viruses were investigated. Ribotype I (P. graminis f. sp. temperata) and ribotype II (P. graminis f. sp. tepida) were confirmed in winter wheat regions of China for the first time. All 63 wheat root samples were infected with ribotype I of P. graminis and 11 were also infected with ribotype II. There was no obvious association between the ribotypes and infection by either WYMV or CWMV (or double infection). Phylogenetic analysis of the P. graminis ITS1-5.8S-ITS2 sequences revealed that ribotype I in China belongs to previously reported subgroup Ib, whereas ribotype II belongs to IIa. There was considerable sequence variation (pairwise distances from 0.0219 to 0.0319) between Chinese ribotype I isolates of different regions and previously reported ribotype I isolate Ken5 (accession number HE860055.1).


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Peng Jin ◽  
Shiqi Gao ◽  
Long He ◽  
Miaoze Xu ◽  
Tianye Zhang ◽  
...  

Histone acetylation is a dynamic modification process co-regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although HDACs play vital roles in abiotic or biotic stress responses, their members in Triticumaestivum and their response to plant viruses remain unknown. Here, we identified and characterized 49 T. aestivumHDACs (TaHDACs) at the whole-genome level. Based on phylogenetic analyses, TaHDACs could be divided into 5 clades, and their protein spatial structure was integral and conserved. Chromosomal location and synteny analyses showed that TaHDACs were widely distributed on wheat chromosomes, and gene duplication has accelerated the TaHDAC gene family evolution. The cis-acting element analysis indicated that TaHDACs were involved in hormone response, light response, abiotic stress, growth, and development. Heatmaps analysis of RNA-sequencing data showed that TaHDAC genes were involved in biotic or abiotic stress response. Selected TaHDACs were differentially expressed in diverse tissues or under varying temperature conditions. All selected TaHDACs were significantly upregulated following infection with the barley stripe mosaic virus (BSMV), Chinese wheat mosaic virus (CWMV), and wheat yellow mosaic virus (WYMV), suggesting their involvement in response to viral infections. Furthermore, TaSRT1-silenced contributed to increasing wheat resistance against CWMV infection. In summary, these findings could help deepen the understanding of the structure and characteristics of the HDAC gene family in wheat and lay the foundation for exploring the function of TaHDACs in plants resistant to viral infections.


2019 ◽  
Vol 21 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Chikako Kiribuchi-Otobe ◽  
Masaya Fujita ◽  
Toshiyuki Takayama ◽  
Hisayo Kojima ◽  
Makiko Chono ◽  
...  

Biology ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 80 ◽  
Author(s):  
Zhang ◽  
Liu ◽  
Zhong ◽  
Zhang ◽  
Xu ◽  
...  

Positive-sense RNA viruses have a small genome with very limited coding capacity and are highly reliant on host factors to fulfill their infection. However, few host factors have been identified to participate in wheat yellow mosaic virus (WYMV) infection. Here, we demonstrate that wheat (Triticum aestivum) light-induced protein (TaLIP) interacts with the WYMV nuclear inclusion b protein (NIb). A bimolecular fluorescence complementation (BIFC) assay displayed that the subcellular distribution patterns of TaLIP were altered by NIb in Nicotiana benthamiana. Transcription of TaLIP was significantly decreased by WYMV infection and TaLIP-silencing wheat plants displayed more susceptibility to WYMV in comparison with the control plants, suggesting that knockdown of TaLIP impaired host resistance. Moreover, the transcription level of TaLIP was induced by exogenous abscisic acid (ABA) stimuli in wheat, while knockdown of TaLIP significantly repressed the expression of ABA-related genes such as wheat abscisic acid insensitive 5 (TaABI5), abscisic acid insensitive 8 (TaABI8), pyrabatin resistance 1-Llike (TaPYL1), and pyrabatin resistance 3-Llike (TaPYL3). Collectively, our results suggest that the interaction of NIb with TaLIP facilitated the virus infection possibly by disturbing the ABA signaling pathway in wheat.


2019 ◽  
Vol 139 (1) ◽  
pp. 93-106 ◽  
Author(s):  
Fuminori Kobayashi ◽  
Hisayo Kojima ◽  
Tsuyoshi Tanaka ◽  
Mika Saito ◽  
Chikako Kiribuchi‐Otobe ◽  
...  

2010 ◽  
Vol 12 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Toru Takeuchi ◽  
Sinya Munekata ◽  
Takako Suzuki ◽  
Keiichi Senda ◽  
Harukuni Horita ◽  
...  

Author(s):  
Guowei Geng ◽  
Chengming Yu ◽  
Xiangdong Li ◽  
Xuefeng Yuan

Abstract Internal ribosome entry sites (IRESes) were first reported in RNA viruses and subsequently identified in cellular mRNAs. In this study, IRES activity of the 5′-UTR in Wheat yellow mosaic virus (WYMV) RNA1 was identified, and the 3′-UTR synergistically enhanced this IRES activity via long-distance RNA–RNA interaction between C80U81and A7574G7575. Within the 5′-UTR, the hairpin 1(H1), flexible hairpin 2 (H2) and linker region (LR1) between H1 and H2 played an essential role in cap-independent translation, which is associated with the structural stability of H1, length of discontinuous stems and nucleotide specificity of the H2 upper loop and the long-distance RNA–RNA interaction sites in LR1. The H2 upper loop is a target region of the eIF4E. Cytosines (C55, C66, C105 and C108) in H1 and H2 and guanines (G73, G79 and G85) in LR1 form discontinuous and alternative base pairing to maintain the dynamic equilibrium state, which is used to elaborately regulate translation at a suitable level. The WYMV RNA1 5′-UTR contains a novel IRES, which is different from reported IRESes because of the dynamic equilibrium state. It is also suggested that robustness not at the maximum level of translation is the selection target during evolution of WYMV RNA1.


Sign in / Sign up

Export Citation Format

Share Document