Construction of squalene-accumulating Saccharomyces cerevisiae mutants by gene disruption through homologous recombination

1994 ◽  
Vol 42 (2-3) ◽  
pp. 353-357 ◽  
Author(s):  
N. Kamimura ◽  
M. Hidaka ◽  
H. Masaki ◽  
T. Uozumi
Genetics ◽  
1998 ◽  
Vol 150 (2) ◽  
pp. 553-562
Author(s):  
Margaret I Kanipes ◽  
John E Hill ◽  
Susan A Henry

Abstract The isolation of mutants of Schizosaccharomyces pombe defective in the synthesis of phosphatidylcholine via the methylation of phosphatidylethanolamine is reported. These mutants are choline auxotrophs and fall into two unlinked complementation groups, cho1 and cho2. We also report the analysis of the cho1+ gene, the first structural gene encoding a phospholipid biosynthetic enzyme from S. pombe to be cloned and characterized. The cho1+ gene disruption mutant (cho1Δ) is viable if choline is supplied and resembles the cho1 mutants isolated after mutagenesis. Sequence analysis of the cho1+ gene indicates that it encodes a protein closely related to phospholipid methyltransferases from Saccharomyces cerevisiae and rat. Phospholipid methyltransferases encoded by a rat liver cDNA and the S. cerevisiae OPI3 gene are both able to complement the choline auxotrophy of the S. pombe cho1 mutants. These results suggest that both the structure and function of the phospholipid N-methyltransferases are broadly conserved among eukaryotic organisms.


2004 ◽  
Vol 24 (12) ◽  
pp. 5130-5143 ◽  
Author(s):  
Christine Soustelle ◽  
Laurence Vernis ◽  
Karine Fréon ◽  
Anne Reynaud-Angelin ◽  
Roland Chanet ◽  
...  

ABSTRACT The Saccharomyces cerevisiae Srs2 protein is involved in DNA repair and recombination. In order to gain better insight into the roles of Srs2, we performed a screen to identify mutations that are synthetically lethal with an srs2 deletion. One of them is a mutated allele of the ULP1 gene that encodes a protease specifically cleaving Smt3-protein conjugates. This allele, ulp1-I615N, is responsible for an accumulation of Smt3-conjugated proteins. The mutant is unable to grow at 37°C. At permissive temperatures, it still shows severe growth defects together with a strong hyperrecombination phenotype and is impaired in meiosis. Genetic interactions between ulp1 and mutations that affect different repair pathways indicated that the RAD51-dependent homologous recombination mechanism, but not excision resynthesis, translesion synthesis, or nonhomologous end-joining processes, is required for the viability of the mutant. Thus, both Srs2, believed to negatively control homologous recombination, and the process of recombination per se are essential for the viability of the ulp1 mutant. Upon replication, mutant cells accumulate single-stranded DNA interruptions. These structures are believed to generate different recombination intermediates. Some of them are fixed by recombination, and others require Srs2 to be reversed and fixed by an alternate pathway.


Mutagenesis ◽  
2013 ◽  
Vol 28 (2) ◽  
pp. 187-195 ◽  
Author(s):  
L. Spugnesi ◽  
C. Balia ◽  
A. Collavoli ◽  
E. Falaschi ◽  
V. Quercioli ◽  
...  

DNA Repair ◽  
2007 ◽  
Vol 6 (10) ◽  
pp. 1496-1506 ◽  
Author(s):  
YoungHo Kwon ◽  
Peter Chi ◽  
Dong Hyun Roh ◽  
Hannah Klein ◽  
Patrick Sung

2007 ◽  
Vol 18 (10) ◽  
pp. 4062-4073 ◽  
Author(s):  
Hocine W. Mankouri ◽  
Hien-Ping Ngo ◽  
Ian D. Hickson

CSM2, PSY3, SHU1, and SHU2 (collectively referred to as the SHU genes) were identified in Saccharomyces cerevisiae as four genes in the same epistasis group that suppress various sgs1 and top3 mutant phenotypes when mutated. Although the SHU genes have been implicated in homologous recombination repair (HRR), their precise role(s) within this pathway remains poorly understood. Here, we have identified a specific role for the Shu proteins in a Rad51/Rad54-dependent HRR pathway(s) to repair MMS-induced lesions during S-phase. We show that, although mutation of RAD51 or RAD54 prevented the formation of MMS-induced HRR intermediates (X-molecules) arising during replication in sgs1 cells, mutation of SHU genes attenuated the level of these structures. Similar findings were also observed in shu1 cells in which Rmi1 or Top3 function was impaired. We propose a model in which the Shu proteins act in HRR to promote the formation of HRR intermediates that are processed by the Sgs1-Rmi1-Top3 complex.


1988 ◽  
Vol 8 (12) ◽  
pp. 5132-5139
Author(s):  
D Thomas ◽  
R Rothstein ◽  
N Rosenberg ◽  
Y Surdin-Kerjan

In Saccharomyces cerevisiae the SAM1 and SAM2 genes encode two distinct forms of S-adenosylmethionine (AdoMet) synthetase. In a previous study we cloned and sequenced the SAM1 gene (D. Thomas and Y. Surdin-Kerjan, J. Biol. Chem. 262:16704-16709, 1987). In this work, the SAM2 gene was isolated by functional complementation of a yeast double-mutant strain, and its identity was ascertained by gene disruption. It has been sequenced and compared with the SAM1 gene. The degree of homology found between the two genes shows that SAM1 and SAM2 are duplicated genes. Using strains disrupted in one or the other SAM gene, we have studied the regulation of their expression by measuring the steady-state level of mRNA after growth under different conditions. The results show that the expression of the two SAM genes is regulated differently, SAM2 being induced by the presence of excess methionine in the growth medium and SAM1 being repressed under the same conditions. The level of mRNA in the parental strain shows that it is not the sum of the levels found in the two disrupted strains. This raises the question of how the two AdoMet synthetases in S. cerevisiae interact to control AdoMet synthesis.


2001 ◽  
Vol 21 (6) ◽  
pp. 2048-2056 ◽  
Author(s):  
Laurence Signon ◽  
Anna Malkova ◽  
Maria L. Naylor ◽  
Hannah Klein ◽  
James E. Haber

ABSTRACT Broken chromosomes can be repaired by several homologous recombination mechanisms, including gene conversion and break-induced replication (BIR). In Saccharomyces cerevisiae, an HO endonuclease-induced double-strand break (DSB) is normally repaired by gene conversion. Previously, we have shown that in the absence ofRAD52, repair is nearly absent and diploid cells lose the broken chromosome; however, in cells lacking RAD51, gene conversion is absent but cells can repair the DSB by BIR. We now report that gene conversion is also abolished when RAD54, RAD55, and RAD57 are deleted but BIR occurs, as withrad51Δ cells. DSB-induced gene conversion is not significantly affected when RAD50, RAD59, TID1(RDH54), SRS2, or SGS1 is deleted. Various double mutations largely eliminate both gene conversion and BIR, including rad51Δ rad50Δ, rad51Δ rad59Δ, andrad54Δ tid1Δ. These results demonstrate that there is aRAD51- and RAD54-independent BIR pathway that requires RAD59, TID1, RAD50, and presumablyMRE11 and XRS2. The similar genetic requirements for BIR and telomere maintenance in the absence of telomerase also suggest that these two processes proceed by similar mechanisms.


Sign in / Sign up

Export Citation Format

Share Document