A GIS-based DRASTIC model for assessing shallow groundwater vulnerability in the Zhangye Basin, northwestern China

2008 ◽  
Vol 57 (6) ◽  
pp. 1435-1442 ◽  
Author(s):  
Xiaohu Wen ◽  
Jun Wu ◽  
Jianhua Si
2018 ◽  
Vol 246 ◽  
pp. 01001
Author(s):  
Aamir Shakoor ◽  
Mahmood Khan Zahid ◽  
H. Umar Farid ◽  
Muhammad Sultan ◽  
Ahmad Khan Aftab ◽  
...  

The demand of groundwater has significantly increased during the past two decades to meet the food and fiber requirements due to constrained surface irrigation water. The groundwater has a major share to grow agriculture in Punjab-Pakistan, which produces more than 90% gains of the country. Beside the importance of groundwater, a major concern in recent years is the contamination of groundwater. The consecutive monitoring and mapping of aquifer water quality in large areas is a hectic job and not even economically feasible. Thus groundwater vulnerability maps are becoming more in demands to represents regional aquifer contamination potential. The aim of this research work was to find out the groundwater vulnerability potential zones in Faisalabad and its nearby areas, which is the fastest growing city of Pakistan. For this purpose, GIS based DRASTIC model was used to measure vulnerability related to agriculture in Faisalabad district. The inputs of the model are based on seven different layers. The results of the model were compared with groundwater samples. It was found that the DRASTIC model accurately identified the vulnerability of Faisalabad District with prediction efficiency of about 73%. The results revealed that more than 30% of study area was under high vulnerability potential. The areas under high vulnerable pollution are located in middle and upper part of Faisalabad District. The high vulnerable pollution in surrounding of Salarwala, Chak Jhumra and Khurianwala cities was due to shallow groundwater table, high recharge, gradual slope, sandy aquifer media and soil media consist of medium sand. The high vulnerable pollution in surrounding of Dijkot city was due to shallow groundwater table, gradual slope, vadose zone consist of course sand and high hydraulic conductivity. It is therefore recommended that Rainwater harvesting and ASR (Aquifer Storage and Recovery Wells) should be adopted in medium and high vulnerability areas to reduce water salinity.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Ratha Phok ◽  
Nandalal Kosgallana Duwage Wasantha ◽  
Weerakoon Sumana Bandara ◽  
Pitawala Herath Mudiyanselage Thalapitiye Ge ◽  
Dharmagunawardhane Hingure Arachchilage

AbstractGroundwater vulnerability assessment has become a crucial step in successfully protecting groundwater against pollution. An attempt of this study has been made to evaluate groundwater contamination risk using intrinsic vulnerability and land-uses in Vanathavillu, Kalpitiya and Katana area in Sri Lanka, using coupled DRASTIC with GIS as feasible methodology. The findings reveal that the groundwater in the areas under study falls under very low to high contamination risk. The higher risk of contamination has been identified in most of the Kalpitiya (about 82%) with the moderate along the beach in the west and next to Puttalam lagoon in the northeast and southeast. This is mainly due to pollution risk inherent with intense vegetable cultivation, over pumping, shallow groundwater tables and permeable sandy soil. Vanathavillu is under very low to moderate contamination risk, in which the moderate risk (about 13%) has especially been found the center, central southwest and west of the area. The relative less deep groundwater tables, possible seepage from the underlying limestone aquifer and less permeable red earth soil could be cause for the moderate risk in the area. Furthermore, results show that the Katana has low to moderately high groundwater contamination risk. Nitrate has a good agreement with the different pollution risk classes and that nitrate can be used as an indicator of aquifer degradation inherent with land-use activities in the coastal areas. Groundwater quality monitoring network should be set up to minimize the anthropogenic acts, particularly in high and moderate contamination risk zones.


2015 ◽  
Vol 15 (4) ◽  
pp. 784-792 ◽  
Author(s):  
Nastaran Khodabakhshi ◽  
Gholamreza Asadollahfardi ◽  
Nima Heidarzadeh

Pollution control and removal of pollutants from groundwater are a challenging and expensive task. The aims of this paper are to determine the aquifer vulnerability of Sefid-Dasht, in Chaharmahal and Bakhtiari province, Iran, using the DRASTIC model. In addition, the groundwater quality index (GQI) technique was applied to assess the groundwater quality and study the spatial variability of major ion concentrations using a geographic information system (GIS). The vulnerability index ranged from 65 to 132, classified into two classes: low and moderate vulnerability. In the southern part of the aquifer, the vulnerability was moderate. Furthermore, the results indicate that the magnitude of the GQI index varies from 92% to 95%. This means the water has a suitable quality. However, from the north to the south and southwest of the aquifer, the water quality has been deteriorating, and the highest concentration of major ions was found in the southwest of the Sefid-Dasht aquifer. A comparison of the vulnerability maps with the GQI index map indicated a poor relation between them. In the DRASTIC method, movement of groundwater is not considered and may be the reason for such inconsistency. However, the movement of groundwater can transport contaminants.


Author(s):  
Kehinde Anthony Mogaji ◽  
Hwee San Lim ◽  
Khiruddin Abdullar

2021 ◽  
Vol 926 (1) ◽  
pp. 012047
Author(s):  
K Aribowo ◽  
W Wilopo ◽  
D H Barianto

Abstract The increasing population density can contaminate groundwater. So far, groundwater is still the primary source to fulfill clean water and drinking water in Muntilan, Salam, and Ngluwar Sub-District. Studies on groundwater vulnerability are essential to minimize the contamination risks as a piece of basic information for land use planning. This research aims to assess groundwater vulnerability in Muntilan, Salam, and Ngluwar Sub-District. The simple vertical vulnerability (SVV) method with GIS was selected to develop a groundwater vulnerability map. The parameters of this method consist of the type of soil/rock, the thickness of the water-unsaturated zone, and the recharge value. The results show that the research area can be divided into three vulnerability classes: very low, moderate, and high groundwater vulnerability. Very low groundwater vulnerability has a value of more than 70 with very high protection effectiveness. The class is distributed in Muntilan and Salam Sub-Districts. Moderate groundwater vulnerability has a value less than 35 to 65 with moderate protection effectiveness, and high groundwater vulnerability has a value ranging from 24 to 35 with low protection effectiveness. Both of the class is evenly distributed in Muntilan, Ngluwar and Salam Sub-Districts.


2020 ◽  
Vol 53 (2E) ◽  
pp. 12-24
Author(s):  
Madyan Al-Gburi

Several studies and assessments have been conducted of areas exposed to pollution, especially areas that contain aquifer. The final extraction of the vulnerability map of the groundwater was constructed through the use of the DRASTIC method by applying the linear equation of the seven coefficients in the Arc GIS software program (Version 10.4). The aim of the study to assess aquifer vulnerability to pollution. Results, vulnerability map range between 75-126 (very low, low, and medium), the study area consists of very low and low vulnerability, except some areas medium vulnerability close to the center of the sub-basin in the standard vulnerability map (s) and 91-149 (very low, low, and medium) for the agriculture or pesticide vulnerability map (p), the medium vulnerability occupies a greater area the center of the sub-basin.


Sign in / Sign up

Export Citation Format

Share Document