scholarly journals Novel observations of Pacinian corpuscle distribution in the hands and feet based on high-resolution 7-T MRI in healthy volunteers

Author(s):  
Christoph Germann ◽  
Reto Sutter ◽  
Daniel Nanz

Abstract Pacinian corpuscles represent special nerve endings that serve as mechanoreceptors sensitive to vibration and pressure and are crucial for proprioception. This work demonstrates that the complex network of Pacinian corpuscles in hands and feet can be examined with three-dimensional Dual Echo Steady State (DESS) MR imaging at 7 T, while previous dedicated MRI reports were either limited to two-dimensional images or focused on the hands. The high-resolution MR images show the detailed architecture of the complex receptor network and reveal a “chain-like” arrangement of Pacinian corpuscles, a predilection for clustering around metacarpophalangeal/metatarsophalangeal joints, proximal phalanges and fingertips, and specific sensor locations both in the superficial subcutaneous tissue and adjacent to deep soft tissue structures such as tendons and joint capsules.

1998 ◽  
Vol 39 (5) ◽  
pp. 547-553 ◽  
Author(s):  
B. Krug ◽  
H. Kugel ◽  
H.-J. Schulze ◽  
T. Krahe ◽  
J. Gieseke ◽  
...  

Objective: to determine whether the spatial resolution that can be achieved with currently available MR devices is adequate for the evaluation of skin disease Material and Methods: We correlated high-resolution MR images of the skin with dermatohistopathology in 26 patients. the examinations were carried out on a 1.0 T imager using a commercially available surface coil (ID 7.5 cm) and optimized SE and GE sequences. Image quality was assessed by four readers on a questionnaire Results: the visualization of the dermis, subcutaneous tissue, and muscle fascia allowed a pattern analysis that gave findings identical to those at dermatohistopathology. It was possible to distinguish septal from lobular panniculitis, and lipatrophia from sclerodermia. Images with contrast media infusion were useful in the differential diagnosis Conclusion: High-resolution MR imaging may narrow down the differential diagnosis of various skin diseases and may help to reduce the number of skin biopsies on certain indications


2013 ◽  
Vol 40 (3) ◽  
pp. 603-608 ◽  
Author(s):  
Eiko Yamabe ◽  
Arash Anavim ◽  
Toshinori Sakai ◽  
Ryo Miyagi ◽  
Toshiyasu Nakamura ◽  
...  

Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Author(s):  
Hirano T. ◽  
M. Yamaguchi ◽  
M. Hayashi ◽  
Y. Sekiguchi ◽  
A. Tanaka

A plasma polymerization film replica method is a new high resolution replica technique devised by Tanaka et al. in 1978. It has been developed for investigation of the three dimensional ultrastructure in biological or nonbiological specimens with the transmission electron microscope. This method is based on direct observation of the single-stage replica film, which was obtained by directly coating on the specimen surface. A plasma polymerization film was deposited by gaseous hydrocarbon monomer in a glow discharge.The present study further developed the freeze fracture method by means of a plasma polymerization film produces a three dimensional replica of chemically untreated cells and provides a clear evidence of fine structure of the yeast plasma membrane, especially the dynamic aspect of the structure of invagination (Figure 1).


Sign in / Sign up

Export Citation Format

Share Document