Interferon beta increases NK cell cytotoxicity against tumor cells in patients with nasopharyngeal carcinoma via tumor necrosis factor apoptosis-inducing ligand

2019 ◽  
Vol 68 (8) ◽  
pp. 1317-1329 ◽  
Author(s):  
Anna Makowska ◽  
Sabrina Franzen ◽  
Till Braunschweig ◽  
Bernd Denecke ◽  
Lian Shen ◽  
...  
Blood ◽  
2006 ◽  
Vol 107 (9) ◽  
pp. 3617-3623 ◽  
Author(s):  
Shino Hanabuchi ◽  
Norihiko Watanabe ◽  
Yi-Hong Wang ◽  
Yui-Hsi Wang ◽  
Tomoki Ito ◽  
...  

Plasmacytoid dendritic cell precursors (pDCs) are professional type I interferon-producing cells, a critical cell type in regulating innate and adaptive immune responses. By microarray gene expression analysis, we found that pDCs activated by virus or CpG-ODN preferentially express the ligand for the glucocorticoid-induced tumor necrosis factor receptor (GITRL), which was confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR) and flow cytometry analysis. Using the same approaches, we found GITR is expressed by activated natural killer (NK) cells and T cells. We show that pDCs activated by CpG-ODN promote NK cell cytotoxicity and interferon (IFN)-γ production through type I IFNs and GITRL. Using a GITRL-transfected cell line, we further demonstrate that GITRL promotes NK cell cytotoxicity and IFN-γ production in synergy with interleukin-2 (IL-2), IFN-α, and NKG2D triggering. We also demonstrated that pDCs localized in close contact to NK cells in T-cell areas of the tonsils, and a subpopulation of the pDCs expressed GITRL. This study reveals a novel function of GITR/GITRL in pDC-mediated coactivation of NK cells.


2004 ◽  
Vol 279 (44) ◽  
pp. 45855-45864 ◽  
Author(s):  
Xiaojian Wang ◽  
Nan Li ◽  
Bin Liu ◽  
Hongying Sun ◽  
Taoyong Chen ◽  
...  

The phosphatidylethanolamine (PE)-binding proteins (PEBPs) are an evolutionarily conserved family of proteins with pivotal biological functions. Here we describe the cloning and functional characterization of a novel family member, human phosphatidylethanolamine-binding protein 4 (hPEBP4). hPEBP4 is expressed in most human tissues and highly expressed in tumor cells. Its expression in tumor cells is further enhanced upon tumor necrosis factor (TNF) α treatment, whereas hPEBP4 normally co-localizes with lysosomes, TNFα stimulation triggers its transfer to the cell membrane, where it binds to Raf-1 and MEK1. L929 cells overexpressing hPEBP4 are resistant to both TNFα-induced ERK1/2, MEK1, and JNK activation and TNFα-mediated apoptosis. Co-precipitation andin vitroprotein binding assay demonstrated that hPEBP4 interacts with Raf-1 and MEK1. A truncated form of hPEBP4, lacking the PE-binding domain, maintains lysosomal co-localization but has no effect on cellular responses to TNFα. Given that MCF-7 breast cancer cells expressed hPEBP4 at a high level, small interfering RNA was used to silence the expression of hPEBP4. We demonstrated that down-regulation of hPEBP4 expression sensitizes MCF-7 breast cancer cells to TNFα-induced apoptosis. hPEBP4 appears to promote cellular resistance to TNF-induced apoptosis by inhibiting activation of the Raf-1/MEK/ERK pathway, JNK, and PE externalization, and the conserved region of PE-binding domain appears to play a vital role in this biological activity of hPEBP4.


1998 ◽  
Vol 188 (9) ◽  
pp. 1611-1619 ◽  
Author(s):  
Mark J. Smyth ◽  
Janice M. Kelly ◽  
Alan G. Baxter ◽  
Heinrich Körner ◽  
Jonathon D. Sedgwick

Natural killer (NK) cells are thought to provide the first line of defence against tumors, particularly major histocompatibility complex (MHC) class I− variants. We have confirmed in C57BL/6 (B6) mice lacking perforin that peritoneal growth of MHC class I− RMA-S tumor cells in unprimed mice is controlled by perforin-dependent cytotoxicity mediated by CD3− NK1.1+ cells. Furthermore, we demonstrate that B6 mice lacking tumor necrosis factor (TNF) are also significantly defective in their rejection of RMA-S, despite the fact that RMA-S is insensitive to TNF in vitro and that spleen NK cells from B6 and TNF-deficient mice are equally lytic towards RMA-S. NK cell recruitment into the peritoneum was abrogated in TNF-deficient mice challenged with RMA-S or RM-1, a B6 MHC class I− prostate carcinoma, compared with B6 or perforin-deficient mice. The reduced NK cell migration to the peritoneum of TNF-deficient mice correlated with the defective NK cell response to tumor in these mice. By contrast, a lack of TNF did not affect peptide-specific cytotoxic T lymphocyte–mediated rejection of tumor from the peritoneum of preimmunized mice. Overall, these data show that NK cells delivering perforin are the major effectors of class I− tumor rejection in the peritoneum, and that TNF is specifically critical for their recruitment to the peritoneum.


Blood ◽  
1998 ◽  
Vol 92 (6) ◽  
pp. 2093-2102 ◽  
Author(s):  
Ombretta Salvucci ◽  
Jean Pierre Kolb ◽  
Bernard Dugas ◽  
Nathalie Dugas ◽  
Salem Chouaib

Abstract We have investigated the interleukin-12 (IL-12) and tumor necrosis factor- (TNF)-induced regulation of human natural killer (NK) cell function and their relationship with nitric oxide (NO) generation. We demonstrate that both cytokines were efficient to trigger the transcription of the inducible nitric oxide synthase (iNOS) mRNA, as detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Western blot analysis and intracytoplasmic fluorescence showed that iNOS protein was also induced by both cytokines. However, our data indicate that NO does not play a significant role in the effector phase of the cytotoxic activity mediated by NK-stimulated cells, inasmuch as the lytic activity was not affected in the presence of specific NO synthase inhibitors. When aminoguanidine (AMG), an inhibitor of iNOS, was added during the afferent phase of NK stimulation with IL-12 and TNF, a subsequent increase in the lytic potential of the effector cells towards the NK-sensitive target cells (K562) and lymphokine-activated killer (LAK) target cells (Daudi) was observed. Conversely, the addition of chemical NO donors during the afferent step resulted in a dose-dependent inhibition of the NK and LAK cytotoxicity. Our data suggest that the enhancement of NK-cell cytotoxic activity resulting from iNOS inhibition may be correlated, at least in part, to an increase in interferon-γ production and granzyme B expression. © 1998 by The American Society of Hematology.


Sign in / Sign up

Export Citation Format

Share Document