Hydrology or Floristics? Mapping and Classification of Wetlands in Victoria, Australia, and Implications for Conservation Planning

2004 ◽  
Vol 34 (4) ◽  
pp. 499-507 ◽  
Author(s):  
Hugh A. Robertson ◽  
James A. Fitzsimons
2019 ◽  
Author(s):  
Joaquín Calatayud ◽  
Magnus Neuman ◽  
Alexis Rojas ◽  
Anton Eriksson ◽  
Martin Rosvall

Although classifications of the Earth’s climates date back to the ancient Greeks, the climatic regions shaping the distribution of animals remain poorly resolved. Here we present a classification of global climates based on regularities in realised niches of 3657 amphibians, 7204 reptiles, 10684 birds and 4574 mammals. We found 16 main climatic regions that are mostly consistent across groups and previous plant expert-based classifications, confirming the existence of major climatic restrictions for life. The results also suggest that differences among groups likely relate to their particular adaptations and dispersal capabilities. We further show how the integration of species niche classifications with geographical information provides valuable information on potential mechanisms shaping the climatic regions. Our climate classification has applications in several disciplines, including conservation planning and ecological and evolutionary studies.


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 86
Author(s):  
Alan D. Christian ◽  
Sean T. McCanty ◽  
Sujata Poudel ◽  
Steve W.A. Chordas ◽  
John L. Harris

Spatial hierarchical approaches to classify freshwater systems can add to our understanding of biogeographical patterns and can be used for biodiversity conservation planning. The Strawberry River is located primarily in the Ozark Highlands Central Plateau of north central Arkansas, USA, with a small downstream portion in the Mississippi Alluvial Plain and has been designated an Extraordinary Resource Water, an Ecologically Sensitive Water Body, and a Natural Scenic Waterway. The goals of this study were to document Strawberry River, Arkansas freshwater mussels to aid in conservation planning. Our first objective was to inventory freshwater mussel species in the Strawberry River. Our second objective was to use this stream-wide dataset to classify the freshwater mussel assemblages. We used unpublished survey data of 59 sites distributed from the headwaters to the mouth to inventory species occurrence and abundance, classified mussel assemblages using non-metric multi-dimensional scaling (NMS), and conducted indicator species analysis on resulting assemblages. We observed 39 taxa across the 59 survey sites including two S1, five S2, 16 S3, 11 S4, four S5, and one state non-ranked conservation rank species. Furthermore, our assemblage NMS revealed two distinct freshwater mussel assemblages roughly organized by an upstream (Sites 1–31) to downstream (Sites 32–59) gradient. There were five upstream indicator species and 13 downstream indicator species. This study provides a case study on using existing datasets with NMS and indicator species analyses to classify mussel assemblages and adds to our understanding of freshwater mussel fauna classification at smaller spatial scales. Both NMS and indicator species outcomes can aid in conservation planning for freshwater mussels.


1966 ◽  
Vol 24 ◽  
pp. 21-23
Author(s):  
Y. Fujita

We have investigated the spectrograms (dispersion: 8Å/mm) in the photographic infrared region fromλ7500 toλ9000 of some carbon stars obtained by the coudé spectrograph of the 74-inch reflector attached to the Okayama Astrophysical Observatory. The names of the stars investigated are listed in Table 1.


Author(s):  
Gerald Fine ◽  
Azorides R. Morales

For years the separation of carcinoma and sarcoma and the subclassification of sarcomas has been based on the appearance of the tumor cells and their microscopic growth pattern and information derived from certain histochemical and special stains. Although this method of study has produced good agreement among pathologists in the separation of carcinoma from sarcoma, it has given less uniform results in the subclassification of sarcomas. There remain examples of neoplasms of different histogenesis, the classification of which is questionable because of similar cytologic and growth patterns at the light microscopic level; i.e. amelanotic melanoma versus carcinoma and occasionally sarcoma, sarcomas with an epithelial pattern of growth simulating carcinoma, histologically similar mesenchymal tumors of different histogenesis (histiocytoma versus rhabdomyosarcoma, lytic osteogenic sarcoma versus rhabdomyosarcoma), and myxomatous mesenchymal tumors of diverse histogenesis (myxoid rhabdo and liposarcomas, cardiac myxoma, myxoid neurofibroma, etc.)


Author(s):  
Irving Dardick

With the extensive industrial use of asbestos in this century and the long latent period (20-50 years) between exposure and tumor presentation, the incidence of malignant mesothelioma is now increasing. Thus, surgical pathologists are more frequently faced with the dilemma of differentiating mesothelioma from metastatic adenocarcinoma and spindle-cell sarcoma involving serosal surfaces. Electron microscopy is amodality useful in clarifying this problem.In utilizing ultrastructural features in the diagnosis of mesothelioma, it is essential to appreciate that the classification of this tumor reflects a variety of morphologic forms of differing biologic behavior (Table 1). Furthermore, with the variable histology and degree of differentiation in mesotheliomas it might be expected that the ultrastructure of such tumors also reflects a range of cytological features. Such is the case.


Author(s):  
Paul DeCosta ◽  
Kyugon Cho ◽  
Stephen Shemlon ◽  
Heesung Jun ◽  
Stanley M. Dunn

Introduction: The analysis and interpretation of electron micrographs of cells and tissues, often requires the accurate extraction of structural networks, which either provide immediate 2D or 3D information, or from which the desired information can be inferred. The images of these structures contain lines and/or curves whose orientation, lengths, and intersections characterize the overall network.Some examples exist of studies that have been done in the analysis of networks of natural structures. In, Sebok and Roemer determine the complexity of nerve structures in an EM formed slide. Here the number of nodes that exist in the image describes how dense nerve fibers are in a particular region of the skin. Hildith proposes a network structural analysis algorithm for the automatic classification of chromosome spreads (type, relative size and orientation).


Author(s):  
Jacob S. Hanker ◽  
Dale N. Holdren ◽  
Kenneth L. Cohen ◽  
Beverly L. Giammara

Keratitis and conjunctivitis (infections of the cornea or conjunctiva) are ocular infections caused by various bacteria, fungi, viruses or parasites; bacteria, however, are usually prominent. Systemic conditions such as alcoholism, diabetes, debilitating disease, AIDS and immunosuppressive therapy can lead to increased susceptibility but trauma and contact lens use are very important factors. Gram-negative bacteria are most frequently cultured in these situations and Pseudomonas aeruginosa is most usually isolated from culture-positive ulcers of patients using contact lenses. Smears for staining can be obtained with a special swab or spatula and Gram staining frequently guides choice of a therapeutic rinse prior to the report of the culture results upon which specific antibiotic therapy is based. In some cases staining of the direct smear may be diagnostic in situations where the culture will not grow. In these cases different types of stains occasionally assist in guiding therapy.


Sign in / Sign up

Export Citation Format

Share Document