scholarly journals Genetic research and clinical analysis of deletional Chinese Gγ+(Aγδβ)0 -thalassemia and Southeast Asian HPFH in South China

2020 ◽  
Vol 99 (12) ◽  
pp. 2747-2753
Author(s):  
Yuanjun Wu ◽  
Qianyu Yao ◽  
Ming Zhong ◽  
Jianying Wu ◽  
Longxu Xie ◽  
...  

AbstractChinese Gγ+(Aγδβ)0-thalassemia and SEA-HPFH are the most common types of β-globin gene cluster deletion in Chinese population. The aim of the study was to analyze clinical features of deletional Chinese Gγ+(Aγδβ)0-thalassemia and Southeast Asian hereditary persistence of fetal hemoglobin (SEA-HPFH) in South China. A total of 930 subjects with fetal hemoglobin (HbF) level ≥ 2% were selected on genetic research of Chinese Gγ+(Aγδβ)0-thalassemia and SEA-HPFH. The gap polymerase chain reaction was performed to identify the deletions. One hundred cases of Chinese Gγ+(Aγδβ)0-thalassemia were detected, including 90 cases of Chinese Gγ+(Aγδβ)0/βN-thalassemia, 7 cases of Chinese Gγ+(Aγδβ)0 /βN-thalassemia combined with α-thalassemia, 2 cases of Chinese Gγ+(Aγδβ)0-thalassemia combined with β-thalassemia, and 1 case of Chinese Gγ+(Aγδβ)0-thalassemia combined with β-gene mutation. One hundred nine cases of SEA-HPFH were detected, including 97 cases of SEA-HPFH/βN, 9 cases of SEA-HPFH/βN combined with α-thalassemia, 2 cases of SEA-HPFH combined with β-thalassemia, and 1 case of SEA-HPFH combined with β-gene mutation. Statistical analysis indicates significant differences in MCV (mean corpuscular volume), MCH (mean corpuscular hemoglobin), and HbA2 and HbF levels between Chinese Gγ+(Aγδβ)0-thalassemia heterozygotes and SEA-HPFH heterozygotes (P < 0.001). There are statistical differences in hematological parameters between them. Clinical phenotypic analysis can provide guidance for genetic counseling and prenatal diagnosis.

Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1109-1113 ◽  
Author(s):  
GJ Dover ◽  
SH Boyer

Abstract We have developed methodology that allows comparison of the mean corpuscular hemoglobin (MCH) of fetal hemoglobin (HbF)-containing red cells (F cells) with the MCH of non-F cells from the same individual. To do this, suspensions of peripheral blood erythrocytes and their internal contents are fixed with an imidodiester, dimethyl-3,3′- dithiobispropionimidate dihydrochloride (DTBP). Thereafter fixed cells are made permeable to antisera by treatment with Triton X-100 and isopropanol, reacted with a mouse monoclonal antibody (MoAb) against HbF, and then with fluorescein-conjugated antimouse IgG. No appreciable hemoglobin is lost during such manipulation. Red cells from a diversity of subjects were thus treated and examined microscopically, first by transmitted light and then by epifluorescence. A direct correlation between Coulter-derived MCH and mean absorbance of 415 nm transmitted light was found for 100 unfixed (r = 0.96) and for 100 antibody-treated fixed-permeabilized red cells (r = 0.99) among individuals selected so as to provide a range of Coulter MCH values between 20 and 35. Comparisons of microscopically derived MCH of F cells and non-F cells were statistically nondistinguishable (P greater than 0.05) in all subjects. Such comparisons included normal individuals (less than 1% F cells), SS patients (7% to 48% F cells), subjects with congenital anemia (22% to 65% F cells), individuals with heterocellular hereditary persistence of HbF (HPFH) (12% to 21% F cells), and heterozygotes for beta + thalassemia (11% to 31% F cells). We conclude that gamma- and beta-globin production within F cells is regulated in a reciprocal fashion both among normal individuals and among individuals with elevated HbF production.


Hemoglobin ◽  
2001 ◽  
Vol 25 (4) ◽  
pp. 375-382 ◽  
Author(s):  
Kim L. McBride ◽  
Karen Snow ◽  
Kathleen S. Kubik ◽  
Virgil F. Fairbanks ◽  
James D. Hoyer ◽  
...  

ANALES RANM ◽  
2021 ◽  
Vol 138 (138(01)) ◽  
pp. 60-71
Author(s):  
Paloma Ropero ◽  
Fernando Ataulfo González Fernández ◽  
Jorge Martínez Nieto ◽  
Williana Melissa Torres Jiménez ◽  
Celina Benavente Cuesta

Objectives. Check with hematological data that the diagnosis and clinical grade of β-thalassemia intermedia can be established when a triplication of genes alpha (αααanti 3.7) and heterozygous β-thalassemia are coherent. Methods. Retrospective study in which 73 patients of Caucasian origin participated, who simultaneously showed a tripling or quadrupling of the genes α and heterozygous β-thalassemia. Screening for the most frequent α-thalassemia mutations, as well as gene triplication (αααanti 3.7) was carried out by multiplex PCR followed by reverse hybridization and confirmed by MLPA. The molecular diagnosis of β-thalassemia was carried out by automatic sequencing according to the Sanger’s method. Results. Genotypes have been classified into three groups according to the number of α-globin genes and the severity of the alteration in the β-globin gene. All had a mutation in the β-globin gene (β0-thalassemia, severe β+-thalassemia, and mild β+-thalassemia). Group I patients who have inherited 6 α globin genes. Group II and group III have inherited 5 α globin genes. In group III, the patients were carriers of mutations affecting the β and δ globin genes. The most significant hematological parameters were hemoglobin levels, mean corpuscular volume, red deep width, and percentage of fetal hemoglobin. Conclusions. In group I, patients who have inherited of 6 α globin genes, either by homozygous triplication (ααα/ααα) or heterozygous quadruplication (αααα/αα), with heterozygous β-thalassemia results in severe to moderate anemia that may require transfusion therapy, being the severity of the β-globin gene mutation that would determine the clinical variation. Group II patients behaved phenotypically like mild thalassemia intermedia. Finally, group III patients behaved like a thalassemic trait since all were carriers of mutations that increase the overexpression of g genes.


Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1109-1113 ◽  
Author(s):  
GJ Dover ◽  
SH Boyer

We have developed methodology that allows comparison of the mean corpuscular hemoglobin (MCH) of fetal hemoglobin (HbF)-containing red cells (F cells) with the MCH of non-F cells from the same individual. To do this, suspensions of peripheral blood erythrocytes and their internal contents are fixed with an imidodiester, dimethyl-3,3′- dithiobispropionimidate dihydrochloride (DTBP). Thereafter fixed cells are made permeable to antisera by treatment with Triton X-100 and isopropanol, reacted with a mouse monoclonal antibody (MoAb) against HbF, and then with fluorescein-conjugated antimouse IgG. No appreciable hemoglobin is lost during such manipulation. Red cells from a diversity of subjects were thus treated and examined microscopically, first by transmitted light and then by epifluorescence. A direct correlation between Coulter-derived MCH and mean absorbance of 415 nm transmitted light was found for 100 unfixed (r = 0.96) and for 100 antibody-treated fixed-permeabilized red cells (r = 0.99) among individuals selected so as to provide a range of Coulter MCH values between 20 and 35. Comparisons of microscopically derived MCH of F cells and non-F cells were statistically nondistinguishable (P greater than 0.05) in all subjects. Such comparisons included normal individuals (less than 1% F cells), SS patients (7% to 48% F cells), subjects with congenital anemia (22% to 65% F cells), individuals with heterocellular hereditary persistence of HbF (HPFH) (12% to 21% F cells), and heterozygotes for beta + thalassemia (11% to 31% F cells). We conclude that gamma- and beta-globin production within F cells is regulated in a reciprocal fashion both among normal individuals and among individuals with elevated HbF production.


Author(s):  
Manasi Gosavi ◽  
Ramesh Chavan ◽  
M. B. Bellad

Abstract Introduction β-Thalassemias are inherited hemoglobinopathies commonly encountered in practice. With chances of a promising cure being rare, the prevention of births with this disorder should assume priority, especially in low-resource countries. This can be achieved by the implementation of a mass screening program that is reliable and, at the same time, cost-effective. Objectives This study focuses on the utility of Naked Eye Single Tube Red Cell Osmotic Fragility Test (NESTROFT) as a mass screening tool to detect thalassemia carriers. Hematological parameters that may predict carrier status were also evaluated. Materials and Methods Hemoglobin estimation was performed on all consented pregnant women. If the patient was found to have hemoglobin < 11 g/dL, the blood sample was subjected to other routine hematological tests along with peripheral smear examination. NESTROFT was performed using 0.36% saline solution. Confirmation was done using high-performance liquid chromatography (HPLC). Statistical Analysis Data obtained were tabulated using version 21 of the Statistical Package for Social Sciences. Means, standard deviations, and percentages were used to describe the sample. Chi-square test and Students’ “t” test were used to identify differences between the groups. Results Of 441 pregnant women enrolled, 206 were found to be anemic. Nineteen (9.2%) of the anemic pregnant women were detected to be carriers of hemoglobinopathies. Among the hematological parameters, mean red blood cell count and reticulocyte count were higher, while mean corpuscular hemoglobin concentration was lower in carriers. Also, carriers were more likely to present with microcytic hypochromic anemia. NESTROFT showed a sensitivity of 84.21%, specificity of 96.25%, a positive predictive value of 69.56%, and a negative predictive value of 98.36%. A false-positive result was seen in 3.74% of the tests, while a false negative result was seen in 15.78% of the tests. Conclusions NESTROFT (0.36%) can be used as a simple and cost-effective mass screening tool for the detection of carrier status. This should be followed by confirmation using HPLC or hemoglobin electrophoresis.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 755
Author(s):  
Nur Atikah Zakaria ◽  
Md Asiful Islam ◽  
Wan Zaidah Abdullah ◽  
Rosnah Bahar ◽  
Abdul Aziz Mohamed Yusoff ◽  
...  

Thalassemia, an inherited quantitative globin disorder, consists of two types, α– and β–thalassemia. β–thalassemia is a heterogeneous disease that can be asymptomatic, mild, or even severe. Considerable research has focused on investigating its underlying etiology. These studies found that DNA hypomethylation in the β–globin gene cluster is significantly related to fetal hemoglobin (HbF) elevation. Histone modification reactivates γ-globin gene expression in adults and increases β–globin expression. Down-regulation of γ–globin suppressor genes, i.e., BCL11A, KLF1, HBG-XMN1, HBS1L-MYB, and SOX6, elevates the HbF level. β–thalassemia severity is predictable through FLT1, ARG2, NOS2A, and MAP3K5 gene expression. NOS2A and MAP3K5 may predict the β–thalassemia patient’s response to hydroxyurea, a HbF-inducing drug. The transcription factors NRF2 and BACH1 work with antioxidant enzymes, i.e., PRDX1, PRDX2, TRX1, and SOD1, to protect erythrocytes from oxidative damage, thus increasing their lifespan. A single β–thalassemia-causing mutation can result in different phenotypes, and these are predictable by IGSF4 and LARP2 methylation as well as long non-coding RNA expression levels. Finally, the coinheritance of β–thalassemia with α–thalassemia ameliorates the β–thalassemia clinical presentation. In conclusion, the management of β–thalassemia is currently limited to genetic and epigenetic approaches, and numerous factors should be further explored in the future.


2008 ◽  
Vol 35 (2) ◽  
pp. 250-255 ◽  
Author(s):  
Anabel Arends ◽  
Marycarmen Chacín ◽  
Martha Bravo-Urquiola ◽  
Tibisay Arends De O ◽  
Maritza Álvarez ◽  
...  

2003 ◽  
Vol 121 (1) ◽  
pp. 28-30
Author(s):  
Sylvia Morais de Sousa ◽  
Letícia Khater ◽  
Luís Antônio Peroni ◽  
Karine Miranda ◽  
Marcelo Jun Murai ◽  
...  

CONTEXT: We verified molecular alterations in a 72-year-old Brazilian male patient with a clinical course of homozygous beta-thalassemia intermedia, who had undergone splenectomy and was surviving without regular blood transfusions. The blood cell count revealed microcytic and hypochromic anemia (hemoglobin = 6.5 g/dl, mean cell volume = 74 fl, mean cell hemoglobin = 24 pg) and hemoglobin electrophoresis showed fetal hemoglobin = 1.3%, hemoglobin A2 = 6.78% and hemoglobin A = 79.4%. OBJECTIVE: To identify mutations in a patient with the symptoms of beta-thalassemia intermedia. DESIGN: Molecular inquiry into the mutations possibly responsible for the clinical picture described. SETTING: The structural molecular biology and genetic engineering center of the Universidade Estadual de Campinas, Campinas, Brazil. PROCEDURES: DNA extraction was performed on the patient's blood samples. The polymerase chain reaction (PCR) was done using five specific primers that amplified exons and the promoter region of the beta globin gene. The samples were sequenced and then analyzed via computer programs. RESULTS: Two mutations that cause the disease were found: -101 (C > T) and codon 39 (C > T). CONCLUSIONS: This case represents the first description of 101 (C > T) mutation in a Brazilian population and it is associated with a benign clinical course.


Sign in / Sign up

Export Citation Format

Share Document