Short-Chain Poly(γ-diaminobutanoic acid), A Poly(amino acid) Produced by a Marine Bacteria Bacillus pumilus

Author(s):  
Shu Li ◽  
Yao Yao ◽  
Shengjie Hu ◽  
Junru Chen
1992 ◽  
Vol 288 (1) ◽  
pp. 117-121 ◽  
Author(s):  
E P Ko ◽  
H Akatsuka ◽  
H Moriyama ◽  
A Shinmyo ◽  
Y Hata ◽  
...  

To elucidate the reaction mechanism of xylanase, the identification of amino acids essential for its catalysis is of importance. Studies have indicated the possibility that the reaction mechanism of xylanase is similar to that of hen's egg lysozyme, which involves acidic amino acid residues. On the basis of this assumption, together with the three-dimensional structure of Bacillus pumilus xylanase and its amino acid sequence similarity to other xylanases of different origins, three acidic amino acids, namely Asp-21, Glu-93 and Glu-182, were selected for site-directed mutagenesis. The Asp residue was altered to either Ser or Glu, and the Glu residues to Ser or Asp. The purified mutant xylanases D21E, D21S, E93D, E93S, E182D and E182S showed single protein bands of about 26 kDa on SDS/PAGE. C.d. spectra of these mutant enzymes show no effect on the secondary structure of xylanase, except that of D21E, which shows a little variation. Furthermore, mutations of Glu-93 and Glu-182 resulted in a drastic decrease in the specific activity of xylanase as compared with mutation of Asp-21. On the basis of these results we propose that Glu-93 and Glu-182 are the best candidates for the essential catalytic residues of xylanase.


2014 ◽  
Vol 12 (25) ◽  
pp. 4318 ◽  
Author(s):  
Nelson L. Brock ◽  
Markus Menke ◽  
Tim A. Klapschinski ◽  
Jeroen S. Dickschat

Author(s):  
Yang Yu ◽  
Jie Yang ◽  
Zhao-Jie Teng ◽  
Li-Yuan Zheng ◽  
Qi Sheng ◽  
...  

As the most abundant D-amino acid (DAA) in the ocean, D-alanine (D-Ala) is a key component of peptidoglycan in bacterial cell wall. However, the underlying mechanisms of bacterial metabolization of D-Ala through microbial food web remain largely unknown. In this study, the metabolism of D-Ala by marine bacterium Pseudoalteromonas sp. CF6-2 was investigated. Based on genomic, transcriptional and biochemical analyses combined with gene knockout, D-Ala aminotransferase was found to be indispensable for the catabolism of D-Ala in strain CF6-2. Investigation on other marine bacteria also showed that D-Ala aminotransferase gene is a reliable indicator for their ability to utilize D-Ala. Bioinformatic investigation revealed that D-Ala aminotransferase sequences are prevalent in genomes of marine bacteria and metagenomes, especially in seawater samples, and Gammaproteobacteria represents the predominant group containing D-Ala aminotransferase. Thus, Gammaproteobacteria is likely the dominant group to utilize D-Ala via D-Ala aminotransferase to drive the recycling and mineralization of D-Ala in the ocean. IMPORTANCE As the most abundant D-amino acid in the ocean, D-Ala is a component of marine DON (Dissolved organic nitrogen) pool. However, the underlying mechanism of bacterial metabolization of D-Ala to drive the recycling and mineralization of D-Ala in the ocean is still largely unknown. The results in this study showed that D-Ala aminotransferase is specific and indispensable for D-Ala catabolism in marine bacteria, and that marine bacteria containing D-Ala aminotransferase genes are predominantly Gammaproteobacteria widely distributed in global oceans. This study reveals marine D-Ala utilizing bacteria and the mechanism of their metabolization of D-Ala. The results shed light on the mechanisms of recycling and mineralization of D-Ala driven by bacteria in the ocean, which are helpful in understanding oceanic microbial-mediated nitrogen cycle.


2000 ◽  
Vol 46 (4) ◽  
pp. 325-332 ◽  
Author(s):  
Sanae Kato ◽  
Isao Yumoto

To examine the distribution of the Na+-translocating NADH-quinone reductase (Na+-NQR) among marine bacteria, we developed a simple screening method for the detection of this enzyme. By reference to the homologous sequences of the Na+-NQR operons from Vibrio alginolyticus and Haemophilus influenzae, a pair of primers was designed for amplification of a part of the sixth ORF (nqr6) of the Na+-NQR operon. When PCR was performed using genomic DNA from 13 marine bacteria, a 0.9-kbp fragment corresponding to nqr6 was amplified in 10 strains. Although there were three PCR-negative strains phylogenetically, based on the sequence of the 16S rRNA, these were placed far from the PCR-positive strains. No product was observed in the case of nonmarine bacteria. The nucleotide and predicted amino acid sequences of nqr6 were highly conserved among the PCR-positive marine bacteria. A phylogenetic analysis of marine bacteria, based on nqr6 sequencing, was performed.Key words: Na+-translocating, NADH-quinone reductase, marine bacteria, PCR.


Author(s):  
Henry Koffler

Movement of bacterial cells is accomplished through the action of flagella, organelles consisting of three morphologically distinct portions, a spiral tubular filament [(f)n] which constitutes over 90% of the organelle, an extracellular hook, and a basal structure, which is intimately associated with the cell surface. The spiral (f)n is constructed of polarly oriented ovoid subunits of flagellin (f) apparently arranged in a helical fashion. Flagellin is a unique protein in that it contains no or only few residues of cys/2, trp, pro, his, or tyr, and is capable of forming normal (f)n by self-assembly. In cells of Bacillus pumilus 101 (f)n contains two types of f(fA,fB) in a ratio of 7:3. Amino acid analyses and examination of the tryptic peptides from purified fA and fB indicate that both molecules are much alike. Both fA and fB are synthesized by the same cell and are located within the same flagellum, since both anti-fA and anti-fB sera, which react specifically with synthetic (fA)n or (fB)n can be seen to coat native (f)n of all cells and the entire length of each (f)n when examined electron microscopically.


1981 ◽  
Vol 199 (1) ◽  
pp. 211-218 ◽  
Author(s):  
H S Kim ◽  
N Tamiya

The amino acid sequence of a short-chain neurotoxin Acanthophis antarcticus c (toxin Aa c) from the venom of an Australian elapid snake, the common death adder (Acanthophis antarcticus, subfamily Acanthophiinae) was elucidated. Toxin Aa c is composed of 62 amino acid residues, including eight half-cystine residues and a cysteine residue. The amino acid sequence of toxin Aa c is homologous with those of other short-chain neurotoxins found in snakes of the family Elapidae, especially with those from snakes of the subfamily Hydrophiinae. The single cysteine residue was located in position 4. Toxin Aa c has a lethal dose (LD50) of 0.08 micrograms/g body weight of mouse on intramuscular injection.


Sign in / Sign up

Export Citation Format

Share Document