D-alanine metabolism via D-Ala aminotransferase by marine Gammaproteobacteria , Pseudoalteromonas sp. CF6-2

Author(s):  
Yang Yu ◽  
Jie Yang ◽  
Zhao-Jie Teng ◽  
Li-Yuan Zheng ◽  
Qi Sheng ◽  
...  

As the most abundant D-amino acid (DAA) in the ocean, D-alanine (D-Ala) is a key component of peptidoglycan in bacterial cell wall. However, the underlying mechanisms of bacterial metabolization of D-Ala through microbial food web remain largely unknown. In this study, the metabolism of D-Ala by marine bacterium Pseudoalteromonas sp. CF6-2 was investigated. Based on genomic, transcriptional and biochemical analyses combined with gene knockout, D-Ala aminotransferase was found to be indispensable for the catabolism of D-Ala in strain CF6-2. Investigation on other marine bacteria also showed that D-Ala aminotransferase gene is a reliable indicator for their ability to utilize D-Ala. Bioinformatic investigation revealed that D-Ala aminotransferase sequences are prevalent in genomes of marine bacteria and metagenomes, especially in seawater samples, and Gammaproteobacteria represents the predominant group containing D-Ala aminotransferase. Thus, Gammaproteobacteria is likely the dominant group to utilize D-Ala via D-Ala aminotransferase to drive the recycling and mineralization of D-Ala in the ocean. IMPORTANCE As the most abundant D-amino acid in the ocean, D-Ala is a component of marine DON (Dissolved organic nitrogen) pool. However, the underlying mechanism of bacterial metabolization of D-Ala to drive the recycling and mineralization of D-Ala in the ocean is still largely unknown. The results in this study showed that D-Ala aminotransferase is specific and indispensable for D-Ala catabolism in marine bacteria, and that marine bacteria containing D-Ala aminotransferase genes are predominantly Gammaproteobacteria widely distributed in global oceans. This study reveals marine D-Ala utilizing bacteria and the mechanism of their metabolization of D-Ala. The results shed light on the mechanisms of recycling and mineralization of D-Ala driven by bacteria in the ocean, which are helpful in understanding oceanic microbial-mediated nitrogen cycle.

TAPPI Journal ◽  
2018 ◽  
Vol 17 (01) ◽  
pp. 31-37
Author(s):  
Bryan McCulloch ◽  
John Roper ◽  
Kaitlin Rosen

Barrier coatings are used in applications including food packaging, dry goods, and consumer products to prevent transport of different compounds either through or into paper and paperboard substrates. These coatings are useful in packaging to contain active ingredients, such as fragrances, or to protect contents from detrimental substances, such as oxygen, water, grease, or other chemicals of concern. They also are used to prevent visual changes or mechanical degradation that might occur if the paper becomes saturated. The performance and underlying mechanism depends on the barrier coating type and, in particular, on whether the barrier coating is designed to prevent diffusive or capillary transport. Estimates on the basis of fundamental transport phenomena and data from a broad screening of different barrier materials can be used to understand the limits of various approaches to construct barrier coatings. These estimates also can be used to create basic design rules for general classes of barrier coatings.


2021 ◽  
Vol 22 (3) ◽  
pp. 1018
Author(s):  
Hiroaki Yokota

Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.


2020 ◽  
Author(s):  
Ada Nowosad ◽  
Pauline Jeannot ◽  
Caroline Callot ◽  
Justine Creff ◽  
Renaud T. Perchey ◽  
...  

SummaryAutophagy is a catabolic process whereby cytoplasmic components are degraded within lysosomes, allowing cells to maintain energy homeostasis during nutrient depletion. Several studies have shown that the CDK inhibitor p27Kip1 promotes starvation-induced autophagy. However, the underlying mechanism remains unknown. Here, we report that in amino acid deprived cells, p27 controls autophagy via an mTORC1-dependent mechanism. During prolonged amino acid starvation, a fraction of p27 is recruited to lysosomes where it interacts with LAMTOR1, a component of the Ragulator complex required for mTORC1 lysosomal localization and activation. p27 binding to LAMTOR1 prevents Ragulator assembly and function and subsequent mTORC1 activation, thereby promoting autophagy. Conversely, upon amino acid withdrawal, p27−/− cells exhibit elevated mTORC1 signaling, impaired lysosomal activity and autophagy, and resistance to apoptosis. This is associated with sequestration of TFEB in the cytoplasm, preventing the induction of lysosomal genes required for lysosomal function. Silencing of LAMTOR1 or mTOR inhibition restores autophagy and induces apoptosis in p27−/− cells. Together, these results reveal a direct, coordinated regulation between the cell cycle and cell growth machineries.


2020 ◽  
Author(s):  
Xinyue Bu ◽  
Tang Li ◽  
Haiyun Wang ◽  
Zhengyuan Xia ◽  
Di Guo ◽  
...  

Abstract Background: Perioperative cerebral hypoperfusion often occurs. However, the underlying mechanism of cognitive impairment resulting when perioperative cerebral hypoperfusion occurs remain mostly to be determined. Anesthetic isoflurane induces neuronal injury via endoplasmic reticulum (ER) stress, whereas sub-anesthetic dose of propofol improves postoperative cognitive function. However, the effects of the combination of isoflurane plus propofol, which is a common combination of anesthesia for patient, on ER stress and the associated cognitive function remain unknown. Methods: We therefore set out to determine the effects of isoflurane plus propofol on the ER stress and cognitive function in the rats insulted by cerebral hypoperfusion. A ligation of bilateral common carotid arteries (CCA) surgery was adopted to prepare rats as cerebral hypoperfusion (CH) animal model. A second surgery, open reduction and internal fixation (ORIF), requiring general anesthesia, was operated 30 days later so that the effects of anesthetics on cognitive function of these CH rats could be assessed. The rats received isoflurane alone (1.9%), propofol alone (40 mg·kg -1 ·h -1 ) or a combination of isoflurane and propofol (1% and 20 mg·kg -1 ·h -1 or 1.4% and 10 mg·kg -1 ·h -1 ). Behavior studies (Fear Conditioning test), histological analyses (Nissl staining) and biochemical analyses (western blotting for the harvested rat brain tissues) were employed in the studies. Results: We found that the combination of 1% isoflurane plus 20 mg·kg -1 ·h -1 propol did not aggravate the cognitive impairment and the ER stress in aging rats with cerebral hypoperusion and being subjected to an ORIF surgery. Conclusions: These data suggest that ER stress contributes to the underlying mechanism of cognitive impairment and the combination of isoflurane and propofol did not aggravate the cognitive impairment and the ER stress in aging rats with cerebral hypoperfusion and being subjected to an ORIF surgery.


Author(s):  
Changjun Guo ◽  
Jian He ◽  
Zhi-Min Li ◽  
Yuanyuan Wang ◽  
Chen nan nan ◽  
...  

Exosomes are associated with cancer progression, pregnancy, cardiovascular diseases, central nervous system–related diseases, immune responses and viral pathogenicity. However, study on the role of exosomes in the immune response of teleost fish, especially antiviral immunity, is limited. Herein, serum-derived exosomes from mandarin fish were used to investigate antiviral effect for the exosomes of teleost fish. Exosomes were isolated from mandarin fish serum by ultracentrifugation could internalize into Mandarin fish fry (MFF-1) cells and inhibited Infectious spleen and kidney necrosis virus (ISKNV) infection. To further investigated the underlying mechanisms of exosomes in inhibiting ISKNV infection. The protein composition of serum-derived exosomes was by analysis mass spectrometry and found that myxovirus resistance 1 (Mx1) was incorporated in the exosomes. Furthermore, the scMx1 protein was proved transferred to the recipient cells though the exosomes. Our results found that the serum-derived exosomes from mandarin fish could inhibit ISKNV replication and suggested an underlying mechanism of the serum-derived exosomes antivirus is that serum-derived exosomes incorporation of the Mx1 protein into exosomes and delivery into recipient cells. This study provided an evidence for the important antiviral role of exosomes in the immune system of teleost fish.


2014 ◽  
Vol 12 (25) ◽  
pp. 4318 ◽  
Author(s):  
Nelson L. Brock ◽  
Markus Menke ◽  
Tim A. Klapschinski ◽  
Jeroen S. Dickschat

2018 ◽  
Vol 475 (6) ◽  
pp. 1107-1119 ◽  
Author(s):  
Chang-Cheng Li ◽  
Mei-Jia Yang ◽  
Li Liu ◽  
Tao Li ◽  
Cui-Ting Peng ◽  
...  

In plants and microorganisms, aspartate kinase (AK) catalyzes an initial commitment step of the aspartate family amino acid biosynthesis. Owing to various structural organizations, AKs from different species show tremendous diversity and complex allosteric controls. We report the crystal structure of AK from Pseudomonas aeruginosa (PaAK), a typical α2β2 hetero-tetrameric enzyme, in complex with inhibitory effectors. Distinctive features of PaAK are revealed by structural and biochemical analyses. Essentially, the open conformation of Lys-/Thr-bound PaAK structure clarifies the inhibitory mechanism of α2β2-type AK. Moreover, the various inhibitory effectors of PaAK have been identified and a general amino acid effector motif of AK family is described.


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 249
Author(s):  
Alexandra M. Schirmacher ◽  
Sayali S. Hanamghar ◽  
Julie A. Z. Zedler

Natural competence is the ability of a cell to actively take up and incorporate foreign DNA in its own genome. This trait is widespread and ecologically significant within the prokaryotic kingdom. Here we look at natural competence in cyanobacteria, a group of globally distributed oxygenic photosynthetic bacteria. Many cyanobacterial species appear to have the genetic potential to be naturally competent, however, this ability has only been demonstrated in a few species. Reasons for this might be due to a high variety of largely uncharacterised competence inducers and a lack of understanding the ecological context of natural competence in cyanobacteria. To shed light on these questions, we describe what is known about the molecular mechanisms of natural competence in cyanobacteria and analyse how widespread this trait might be based on available genomic datasets. Potential regulators of natural competence and what benefits or drawbacks may derive from taking up foreign DNA are discussed. Overall, many unknowns about natural competence in cyanobacteria remain to be unravelled. A better understanding of underlying mechanisms and how to manipulate these, can aid the implementation of cyanobacteria as sustainable production chassis.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3806 ◽  
Author(s):  
Qiao Zhang ◽  
Yi Zhang ◽  
Shi-Kang Zhou ◽  
Kan Wang ◽  
Min Zhang ◽  
...  

The dried roots of Euphorbia kansui S.L.Liou ex S.B.Ho have long been used to treat edema in China. However, the severe toxicity caused by Euphorbia kansui (EK) has seriously restricted its clinical application. Although EK was processed with vinegar to reduce its toxicity, the detailed mechanisms of attenuation in toxicity of EK stir-fried with vinegar (VEK) have not been well delineated. Diterpenoids are the main toxic ingredients of EK, and changes in these after processing may be the underlying mechanism of toxicity attenuation of VEK. 3-O-(2′E,4′Z-decadienoyl)-20-O-acetylingenol (3-O-EZ) is one of the diterpenoids derived from EK, and the content of 3-O-EZ was significantly reduced after processing. This study aims to explore the underlying mechanisms of toxicity reduction of VEK based on the change of 3-O-EZ after processing with vinegar. Based on the chemical structure of 3-O-EZ and the method of processing with vinegar, simulation experiments were carried out to confirm the presence of the product both in EK and VEK and to enrich the product. Then, the difference of peak area of 3-O-EZ and its hydrolysate in EK and VEK were detected by ultra-high-performance liquid chromatography (UPLC). Furthermore, the toxicity effect of 3-O-EZ and its hydrolysate, as well as the underlying mechanism, on zebrafish embryos were investigated. The findings showed that the diterpenoids (3-O-EZ) in EK can convert into less toxic ingenol in VEK after processing with vinegar; meanwhile, the content of ingenol in VEK was higher than that of EK. More interestingly, the ingenol exhibited less toxicity (acute toxicity, developmental toxicity and organic toxicity) than that of 3-O-EZ, and 3-O-EZ could increase malondialdehyde (MDA) content and reduce glutathione (GSH) content; cause embryo oxidative damage by inhibition of the succinate dehydrogenase (SDH) and superoxide dismutase (SOD) activity; and induce inflammation and apoptosis by elevation of IL-2 and IL-8 contents and activation of the caspase-3 and caspase-9 activity. Thus, this study contributes to our understanding of the mechanism of attenuation in toxicity of VEK, and provides the possibility of safe and rational use of EK in clinics.


Sign in / Sign up

Export Citation Format

Share Document