scholarly journals Diagnostic value of ultrasonography in acute lateral and syndesmotic ligamentous ankle injuries

Author(s):  
Thomas P. A. Baltes ◽  
Javier Arnáiz ◽  
Liesel Geertsema ◽  
Celeste Geertsema ◽  
Pieter D’Hooghe ◽  
...  

Abstract Objectives To determine the diagnostic value of ultrasonography for complete discontinuity of the anterior talofibular ligament (ATFL), the calcaneofibular ligament (CFL) and the anterior inferior tibiofibular ligament (AITFL). Methods All acute ankle injuries in adult athletes (> 18 years old) presenting to the outpatient department of a specialised Orthopaedic and Sports Medicine Hospital within 7 days post-injury were assessed for eligibility. Using ultrasonography, one musculoskeletal radiologist assessed the ATFL, CFL and AITFL for complete discontinuity. Dynamic ultrasound measurements of the tibiofibular distance (mm) in both ankles (injured and contralateral) were acquired in the neutral position (N), during maximal external rotation (Max ER), and maximal internal rotation (Max IR). MR imaging was used as a reference standard. Results Between October 2017 and July 2019, 92 acute ankle injuries were included. Ultrasound diagnosed complete discontinuity of the ATFL with 87% (CI 74–95%) sensitivity and 69% (CI 53–82%) specificity. Discontinuity of the CFL was diagnosed with 29% (CI 10–56%) sensitivity and 92% (CI 83–97%) specificity. Ultrasound diagnosed discontinuity of the AITFL with 100% (CI 74–100%) sensitivity and 100% (CI 95–100%) specificity. Of the dynamic measurements, the side-to-side difference in external rotation had the highest diagnostic value for complete discontinuity of the AITFL (sensitivity 82%, specificity 86%; cut-off 0.93 mm). Conclusions Ultrasound has a good to excellent diagnostic value for complete discontinuity of the ATFL and AITFL. Therefore, ultrasound can be used to screen for injury of the ATFL and AITFL. Compared with ultrasound, dynamic ultrasound has inferior diagnostic value for complete discontinuity of the AITFL. Key Points • Ultrasound has a good to excellent diagnostic value for complete discontinuity of the anterior talofibular ligament (ATFL) and anterior inferior tibiofibular ligament (AITFL). • Ultrasound can be used to screen for injury of the ATFL and AITFL. • Compared with ultrasound, dynamic ultrasound has inferior diagnostic value for complete discontinuity of the AITFL.

Foot & Ankle ◽  
1988 ◽  
Vol 9 (2) ◽  
pp. 59-63 ◽  
Author(s):  
P. Renstrom ◽  
M. Wertz ◽  
S. Incavo ◽  
M. Pope ◽  
H.C. Ostgaard ◽  
...  

Strain was measured in the normal anterior talofibular ligament (ATF) and the calcaneofibular ligament (CF) using Hall effect strain transducers in five cadaveric ankles. These measurements were made in both ligaments with the ankle in neutral position and with the foot moving from 10° dorsiflexion to 40° plantarflexion in an apparatus that permits physiologic motion. The ankle ligaments were then tested with the foot placed in six different positions that combined supination, pronation, external rotation, and internal rotation. In the neutral position, through a range of motion of 10° dorsiflexion to 40° plantarflexion, the anterior talofibular ligament underwent an increasing strain of 3.3%. No significant strain increase was found with internal rotation. The only significant difference from the strains at the neutral position was in external rotation, which decreased strain 1.9%. In all positions, increased strain occurred with increased plantarflexion. The calcaneofibular ligament was essentially isometric in the neutral position throughout the flexion arc. The calcaneofibular ligament strain was significantly increased by supination and external rotation. However, with increasing plantarflexion in these positions, the strain in the calcaneofibular ligament decreased. Therefore, plantarflexion has a relaxing effect on the calcaneofibular ligament. Thus, the anterior talofibular and calcaneofibular ligaments are synergistic, such that when one ligament is relaxed, the other is strained and vice versa.


Author(s):  
Feng Wei ◽  
John W. Powell ◽  
Roger C. Haut

Numerous studies on the mechanisms of ankle injury deal with injuries to the syndesmosis and anterior ligamentous structures, but previous sectioning and clinical studies also describe the important role of the posterior talofibular ligament (PTaFL) in the ankle’s resistance to external rotation of the foot. Foot constraint may influence subtalar motion and the movement of the bones in the foot, thereby influencing the mode of injury during external rotation [1]. Stiehl et al. [2] constrain the foot with fiberglass cast tape, externally rotate the foot 90°, and produce injury to the deltoid ligament and anterior tibiofibular ligament (ATiFL) with bone fracture. In contrast, Stormont et al. [3] fix the foot in a potting alloy and conclude the primary ligamentous restraints to external rotation are the PTaFL and calcaneofibular ligament (CaFL).


2020 ◽  
Vol 24 (4) ◽  
pp. 266-271
Author(s):  
N. Yu. Serova ◽  
T. A. Akhadov ◽  
I. A. Melnikov ◽  
O. V. Bozhko ◽  
N. A. Semenova ◽  
...  

Introduction. Sprain of the ankle joint is one of the most common injuries in children during sport activities. Purpose. To define MRI diagnostic value in ankle joint injuries. Material and methods. 30 patients , 18 boys and 12 girls aged 8-17 ( average age 14.6 years), were enrolled into the study. 20 of them (66.7%) were 12-14 years old, 3 (10%) - < 10 years old and 7 (23.3 %) - > 14 years old. A Philips AchievadStream 3.0 Tesla scanner was used for MRI examination. Results. MRI findings showed that 17 (56.7%) patients had damage of the anterior talofibular ligament; 8 patients had avulsion of bone fragments of the lateral ankle; 9 patients (30.0%) had partial deltoid ligament injuries. Complete rupture of ligaments was rare and was seen only in two patients (6.7%). Conclusion. MRI is a method of choice in assessing ankle injuries due to high contrast of soft tissues, high resolution and multi-planar potentials. MRI is especially useful in examining soft ankle tissue structures such as tendons, ligaments, nerves and fascia, as well as in revealing hidden / subtle bone damage.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Paweł Szaro ◽  
Khaldun Ghali Gataa ◽  
Mateusz Polaczek ◽  
Bogdan Ciszek

AbstractThe anterior talofibular ligament and the calcaneofibular ligament are the most commonly injured ankle ligaments. This study aimed to investigate if the double fascicular anterior talofibular ligament and the calcaneofibular ligament are associated with the presence of interconnections between those two ligaments and connections with non-ligamentous structures. A retrospective re-evaluation of 198 magnetic resonance imaging examinations of the ankle joint was conducted. The correlation between the double fascicular anterior talofibular ligament and calcaneofibular ligament and connections with the superior peroneal retinaculum, the peroneal tendon sheath, the tibiofibular ligaments, and the inferior extensor retinaculum was studied. The relationships between the anterior talofibular ligament’s and the calcaneofibular ligament’s diameters with the presence of connections were investigated. Most of the connections were visible in a group of double fascicular ligaments. Most often, one was between the anterior talofibular ligament and calcaneofibular ligament (74.7%). Statistically significant differences between groups of single and double fascicular ligaments were visible in groups of connections between the anterior talofibular ligament and the peroneal tendon sheath (p < 0.001) as well as the calcaneofibular ligament and the posterior tibiofibular ligament (p < 0.05), superior peroneal retinaculum (p < 0.001), and peroneal tendon sheath (p < 0.001). Differences between the thickness of the anterior talofibular ligament and the calcaneofibular ligament (p < 0.001), the diameter of the fibular insertion of the anterior talofibular ligament (p < 0.001), the diameter of calcaneal attachment of the calcaneofibular ligament (p < 0.05), and tibiocalcaneal angle (p < 0.01) were statistically significant. The presence of the double fascicular anterior talofibular ligament and the calcaneofibular ligament fascicles correlate with connections to adjacent structures.


2019 ◽  
Vol 7 (8) ◽  
pp. 232596711986401 ◽  
Author(s):  
Stéphanie Lamer ◽  
Jonah Hébert-Davies ◽  
Vincent Dubé ◽  
Stéphane Leduc ◽  
Émilie Sandman ◽  
...  

Background: Syndesmotic injuries can lead to long-term complications; hence, they require careful management. Conservative treatment is adequate when 1 syndesmotic ligament is injured, but surgery is often necessary to achieve articular congruity when 3 syndesmotic ligaments are ruptured. However, there is some controversy over the best treatment for 2-ligament injuries. Purpose: To evaluate the effect of a controlled ankle motion (CAM) walking boot on syndesmotic instability following iatrogenic isolated anterior inferior tibiofibular ligament (AiTFL) injury and combined AiTFL/interosseous ligament (IOL) injuries in a cadaveric simulated weightbearing model. Study Design: Controlled laboratory study. Methods: Ten cadaveric specimens were dissected to expose the tibial plateau and syndesmosis. The specimens were fitted to a custom-made device, and a reproducible axial load of 750 N was applied. Iatrogenic rupture of the syndesmotic ligaments (AiTFL + IOL) was done sequentially. Uninjured syndesmoses, isolated AiTFL rupture, and combined AiTFL/IOL rupture were compared with and without axial loading (AL) and CAM boot. The distal tibiofibular relationship was evaluated using a previously validated computed tomography scan measurement system. Wilcoxon tests for paired samples and nonparametric data were used. Results: The only difference noted in the distal tibiofibular relationship during AL was an increase in the external rotation of the fibula when using the CAM boot. This was observed with AiTFL rupture (8.40° vs 11.17°; P = .009) and combined AiTFL/IOL rupture (8.81° vs 11.97°; P = .005). Conclusion: AL did not cause a significant displacement between the tibia and fibula, even when 2 ligaments were ruptured. However, the CAM boot produced a significant external rotation with 1 or 2 injured ligaments. Clinical Relevance: Further studies are needed to assess the capacity of the CAM walking boot to prevent malreduction when external rotation forces are applied to the ankle. Moreover, special care should be taken during the fitting of the CAM boot to avoid overinflation of the cushions.


2017 ◽  
Vol 2 (3) ◽  
pp. 2473011417S0000
Author(s):  
Conor Murphy ◽  
Thomas Pfeiffer ◽  
Jason Zlotnicki ◽  
Volker Musahl ◽  
Richard Debski ◽  
...  

Category: Ankle, Sports, Trauma Introduction/Purpose: Anterior inferior tibiofibular ligament (AITFL), Posterior inferior tibiofibular ligament (PITFL) and Interosseous membrane (IOM) disruption is a predictive measure of residual symptoms after ankle injury. In unstable injuries, the syndesmosis is treated operatively with cortical screw fixation or a suture button apparatus. Biomechanical analyses of suture button versus cortical screw fixation methods show contradicting results regarding suture button integrity and maintenance of fixation. The objective of this study is to quantify tibiofibular joint motion in syndesmotic screw and suture button fixation models compared to the intact ankle. Methods: Five fresh-frozen human cadaveric specimens (mean age 58 yrs.; range 38-73 yrs.) were tested using a 6-degree-of- freedom robotic testing system. The tibia and calcaneus were rigidly fixed to the robotic manipulator and the subtalar joint was fused. The full fibular length was maintained and fibular motion was unconstrained. Fibular motion with respect to the tibia was tracked by a 3D optical tracking system. A 5 Nm external rotation moment and 5 Nm inversion moment were applied to the ankle at 0°, 15°, and 30° plantarflexion and 10° dorsiflexion. Outcome variables included fibular medial-lateral (ML) translation, anterior-posterior (AP) translation, and external rotation (ER) in the following states: 1) intact ankle, 2) AITFL transected, 3) PITFL and IOM transected, 4) 3.5 mm cannulated tricortical screw fixation, 5) suture button fixation. An ANOVA with a post-hoc Tukey analysis was performed for statistical analysis (*p<0.05). Results: Significant differences in fibular motion were only during the inversion moment. Fibular posterior translation was significantly higher with complete syndesmosis injury compared to the intact ankle at 0°, 15°, and 30° plantarflexion and the tricortical screw at 15° and 30°. Significantly higher fibular posterior translation was observed with the suture button compared to the intact ankle at 15° and 30 plantarflexion and to the tricortical screw at 15°. ER was significantly increased with complete injury compared to the tricortical screw at 0° and 30° plantarflexion. The suture button demonstrated significantly greater ER at 0° plantarflexion and 10° dorsiflexion compared to the intact ankle. The only significant difference in ML translation exists between the tricortical screw and complete injury at 30° plantarflexion. Conclusion: The suture button did not restore physiologic motion of the syndesmosis. It only restored fibular ML translation. Significant differences in AP translation and ER persisted compared to the intact ankle. The tricortical screw restored fibular motion in all planes. No significant differences were observed compared to the intact ankle. These findings are consistent with previous studies. This study utilized a novel setup to measure unconstrained motion in a full length, intact fibula. Physicians should evaluate AP translation and ER as critical fibular motions when reconstructing the syndesmosis with suture button fixation.


2022 ◽  
Vol 104-B (1) ◽  
pp. 68-75
Author(s):  
Nick J. Harris ◽  
Gareth Nicholson ◽  
Ippokratis Pountos

Aims The ideal management of acute syndesmotic injuries in elite athletes is controversial. Among several treatment methods used to stabilize the syndesmosis and facilitate healing of the ligaments, the use of suture tape (InternalBrace) has previously been described. The purpose of this study was to analyze the functional outcome, including American Orthopaedic Foot & Ankle Society (AOFAS) scores, knee-to-wall measurements, and the time to return to play in days, of unstable syndesmotic injuries treated with the use of the InternalBrace in elite athletes. Methods Data on a consecutive group of elite athletes who underwent isolated reconstruction of the anterior inferior tibiofibular ligament using the InternalBrace were collected prospectively. Our patient group consisted of 19 elite male athletes with a mean age of 24.5 years (17 to 52). Isolated injuries were seen in 12 patients while associated injuries were found in seven patients (fibular fracture, medial malleolus fracture, anterior talofibular ligament rupture, and posterior malleolus fracture). All patients had a minimum follow-up period of 17 months (mean 27 months (17 to 35)). Results All patients returned to their pre-injury level of sports activities. One patient developed a delayed union of the medial malleolus. The mean return to play was 62 days (49 to 84) for isolated injuries, while the patients with concomitant injuries returned to play in a mean of 104 days (56 to 196). The AOFAS score returned to 100 postoperatively in all patients. Knee-to-wall measurements were the same as the contralateral side in 18 patients, while one patient lacked 2 cm compared to the contralateral side. Conclusion This study suggests the use of the InternalBrace in the management of unstable syndesmotic injuries offers an alternative method of stabilization, with good short-term results, including early return to sports in elite athletes. Cite this article: Bone Joint J 2022;104-B(1):68–75.


2021 ◽  
pp. 107110072110151
Author(s):  
Jin Su Kim ◽  
Hyuck Soo Shin

Background: Isolated ankle syndesmosis disruption (without fibula fracture) causes acute pain and may cause chronic instability and pain. The aim of the present study was to evaluate the outcomes after anterior inferior tibiofibular ligament (AITFL) anatomical fixation using anchor sutures for unstable isolated syndesmosis disruption without fibular fractures. Methods: This study assessed 22 athletes who were diagnosed with unstable isolated syndesmosis disruption with a positive external rotation test, had more than 2-mm diastasis on ultrasound, and had complete AITFL rupture on magnetic resonance imaging between 2004 and 2020. Eighteen patients (82%) were elite-level athletes, and the remaining 4 were recreational athletes. Twelve patients (55%) were injured by an external rotation force. The athletes underwent open anatomical suture anchor fixation between the AITFL attachment sites, the fibula and tibia. The mechanism of injury, return-to-play time, and Foot and Ankle Outcome Score (FAOS) were evaluated. Results: All athletes returned to previous play except 1 retired elite athlete. Twenty-two athletes returned to jogging, team training, and official game play at an average of 62, 89, and 102 days, respectively. The final average follow-up FAOS symptom, pain, daily activity, sports activity, and quality of life scores were 98, 97, 100, 99, and 97, respectively. Two athletes were reinjured, and 1 required reoperation in the follow-up period. Conclusion: Athletes with isolated syndesmosis disruption had a high likelihood to return to their previous activity level after suture anchor augmentation. Level of Evidence: Level IV.


2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0029
Author(s):  
Jinsu Kim ◽  
Young-uk Park ◽  
Kyung-tai Lee ◽  
Kiwon Young ◽  
Sang Lee

Category: Sports Introduction/Purpose: Syndesmotic stability is usually assessed arthroscopically by an arthroscopic probe insertion between the anterolateral tibio-fibular recess. This probe test can predict the syndesmotic instability, however, is difficult to determine syndesmotic fixation. The syndesmosis has dynamic motion and fairly firm structure, 2 mm thin probe cannot make syndesmotic dynamic diastasis. We proposed a new “Freer test” for diagnosis of syndesmosis injury which performed to insert a 2 mm diameter freer elevator between tibio-fibular lateral gutter while keeping the ankle at the plantigrade. The purpose of the present study was to evaluate the diagnostic value of freer test for anterior inferior tibiofibular ligament (AITFL) complete tear, interosseous ligament (IOL) tear and Weber type B fibular fracture. Methods: Ten fresh ankle cadaveric specimens were used. Operative procedures progressed as below; firstly, exposed antero-lateral ankle joint with direct lateral longitudinal incision, incised AITFL, incised IOL, performed Weber type B osteotomy at fibular, fixed the osteomized fibular with 8-hole locking plate and fixed the AITFL with suture anchors. In each procedure, freer tests with ankle dorsiflexion (DF, plantigrade) and plantarflexion (PF) were performed with freer elevator linked 3 kgf compression gauge. A negative test was defined as the freer did not insert with a more than 3 kgf. A positive test was defined lesser than 3 kgf, and measured the force at the insertion. Results: All freer test was negative with DF before procedures. Six ankles with PF were positive with average 1.5 kgf. All freer test positive has shown after AITFL cutting in DF, PF(mean 1.76 kgf, 1.19 kgf). After IOL cutting, all freer tests were positive in DF, PF(mean 1.46, 0.79 kgf). After fibular osteotomy, all freer tests were positive in DF, PF (mean 0.83,0.18 kgf). After fibular fixation with plate, all freer tests were positive in DF, PF (mean 1.26, 0.97 kgf). After syndesmotic fixation with anchors, 8 freer tests were positive in DF. 2 negative in PF, 4 negative in PF and 6 positive in PF. 2 positive in DF had partial breakage on anchor footprint due to weak bone. Conclusion: The “freer test” is useful diagnostic tool which test positive means AITFL rupture.


1996 ◽  
Vol 17 (5) ◽  
pp. 259-263 ◽  
Author(s):  
John R. Morris ◽  
Jackson Lee ◽  
David Thordarson ◽  
Michael R. Terk ◽  
Marshall Brustein

Magnetic resonance imaging (MRI) studies were performed on five patients with acute Maisonneuve fractures. All patients had sustained a twisting injury to their ankles and complained of ankle pain and pain over their proximal fibula. High quality images with excellent visualization of all the ankle ligamentous structures were obtained. MRI showed that the anterior inferior tibiofibular ligament was disrupted in ail patients and the posterior inferior tibiofibular ligament was intact in three of five patients. Also, the anterior talofibular ligament was disrupted in all patients and the calcaneofibular ligament was ruptured in two of five patients. This raises the question of whether patients with Maisonneuve fractures have lateral ankle instability at long-term follow-up. Although the superficial deltoid ligament was disrupted in all patients, the deep deltoid ligament was intact in one patient, partially disrupted in one patient, and completely disrupted in three patients. The interosseous ligament was disrupted at the ankle in all patients, while the interosseous membrane was disrupted in the leg in all patients except one. This patient had an intact interosseous membrane despite rupture of the interosseous ligament at the ankle, and the presence of a proximal one third fibula fracture.


Sign in / Sign up

Export Citation Format

Share Document