scholarly journals Saltmarsh archives of vegetation and land use change from Big River Marsh, SW Newfoundland, Canada

Author(s):  
Katherine A. Selby ◽  
Helen M. Roe ◽  
Alexander J. Wright ◽  
Orson van de Plassche ◽  
Sally R. Derrett

AbstractPollen and plant macrofossils are often well-preserved in coastal sediments, providing a palaeoenvironmental record of sea-level and landscape change. In this study, we examine the pollen and plant macrofossil assemblages of a well-dated saltmarsh sediment core from southwest Newfoundland, Canada, to establish recent coastal vegetation and land use change, to increase the knowledge of anthropogenic activities in the area and develop pollen chronozones for reconstructing marsh accumulation rates and to examine the representation of plant macrofossil remains in the wetland pollen profile. Grouping the pollen record into upland and wetland assemblages allows local events related to hydrological change to be separated from landscape-scale changes. The wetland pollen and plant macrofossil records indicate a general acceleration in sea-level rise ca. ad 1700. The sedge pollen and plant macrofossil records attest to multiple phases of rhizome encroachment during inferred periods of marine regression. Two chronozones are identified from the upland pollen profile; the first associated with the settlement of St. George’s Bay ca. ad 1800, signalled by increases in Plantago lanceolata and Ambrosia pollen; the second with the permanent settlement of the Port au Port peninsula ca. ad 1850, indicated by increased P. lanceolata and Rumex pollen. Comparison of the plant macrofossil and wetland pollen profiles highlights the underrepresentation of grass pollen preserved in the saltmarsh sediments and a need for further analysis of the zonation, pollen dispersal and macrofossil representation of sedge species in saltmarshes.

2019 ◽  
Author(s):  
Soely Luyando-Flusa ◽  
◽  
Christopher J. Hein ◽  
Leslie Reeder-Myers ◽  
Torben Rick ◽  
...  

2020 ◽  
Author(s):  
Ketema Deribew ◽  
Etana Jaleta ◽  
Belayhun Mandefro ◽  
Zeleke Mekonnen ◽  
Delenasaw Yewhalaw ◽  
...  

Abstract Background: Land use and land cover change significantly affects biodiversity, abundance and distribution of intermediate snail host fauna. In Omo-Gibe river basin the extent of land-use change is high due to anthropogenic activities leading to habitat change of freshwater snail intermediate hosts. Most intermediate snail hosts of human Schistosome parasites belong to two genera, Biomphalaria and Bulinus. In Addition, Lymnea spp. is another important host of Fasciola which causes fasciolasis in domestic animals and human. This study aims to assess the effects of land-use on the distribution and abundance of freshwater snail intermediate hosts and cercariae infection rates of fresh water intermediate snail hosts in Omo-Gibe River basin, Ethiopia.Methods: This study was conducted in Omo-Gibe river basin in 130 sampling sites which include rivers, lakes, dams, stream, wetlands and irrigation ditches. At each site data on land use, anthropogenic activities, freshwater snail abundance and species diversity, and water samples were collected. Snails were collected from each sampling sites using a scoop (20cm x 30cm) with a mesh size of 300µm. Snails were sorted by genus on Enamel pan using forceps and preserved in labeled vials containing 75% ethanol. Live snails collected from the same habitat were sorted carefully and put in clean plastic buckets half filled with water. Afterwards, snails were provided with fresh lettuce leaves and maintained in the laboratory. Snails were then identified morphologically to family, genus and to species level. Each snail was examined for cercaria shedding by placing in a petri dish containing water and exposed to the sun for 2 hours. Cercariae were morphologically identified by microscopy. ArcGIS software of version 10.3.1 was used to map snail distribution and data were analysed using SPSS version-20.Results: The results obtained in this study shows clearly that land use change affect the distribution and abundance of fresh water snails in Omo-Gibe river basin. Fresh water snails were more abundant in farmland and settlement areas. Of the total 2,559 freshwater snails collected from 130 surveyed sites in Omo-Gibe river basin, 1749 (68.34%) belongs to medically important snail species. Biomphalaria spp.914 (35.7%),, Lymnea spp.439 (17.1%),, Physa spp. 343(13.4%) and Bulinus spp 53 (2%)). Sphaeriidae group accounted for 810 (31.6%) of the collected specimens. Biomphalaria pfeifferi was the predominant species of the total snail sampled from lakes, wetlands, rivers and irrigation ditches. Biomphalaria pfeifferi was the most infected snail species by different cercariae. Bulinus globosus and L.natalensis were infected by more than one and same type of cercariae. However, none of B. sudanica and P. acuta specimens was infected by trematode.Conclusions: The results of this study revealed that land use change altered the abundance, distribution and diversity of medically important fresh water snails in the study area. In general medically important freshwater snails which include: Biomphalaria spp, Bulinus spp and Lymnaea spp were collected from lakes, rivers, wetlands, irrigation ditches.. The medically important snail species found infected by cercaria are L. natalensis, B. pfeifferi and B. globosus. Biomphalaria pfefferi was the predominant species and highly infected by cercariae. Higher infection rate was observed in snails collected in Farmland (16.59%) and Grassland (36.6%).


2019 ◽  
Vol 104 (3) ◽  
pp. 495-511 ◽  
Author(s):  
Krissa A. Skogen ◽  
Rick P. Overson ◽  
Evan T. Hilpman ◽  
Jeremie B. Fant

Land-use change is among the top drivers of global biodiversity loss, which impacts the arrangement and distribution of suitable habitat for species. Population-level effects include increased isolation, decreased population size, and changes to mutualistic and antagonistic interactions. However, the extent to which species are impacted is determined by life history characteristics including dispersal. In plants, mating dynamics can be changed in ways that can negatively impact population persistence if dispersal of pollen and/or seed is disrupted. Long-distance dispersal has the potential to buffer species from the negative impacts of land-use change. Biotic vectors of long-distance dispersal have been less frequently studied, though specific taxa are known to travel great distances. Here, we describe population genetic diversity and structure in a sphingophilous species that is experiencing habitat fragmentation through land-use change, Oenothera harringtonii W. L. Wagner, Stockh. & W. M. Klein (Onagraceae). We use 12 nuclear and four plastid microsatellite markers and show that pollen dispersal by hawkmoths drives high gene flow and low population differentiation despite a range-wide gradient of land-use change and habitat fragmentation. By separating the contributions of pollen and seed dispersal to gene flow, we show that most of the genetic parameters are driven by hawkmoth-facilitated long-distance pollen dispersal, but populations with small, effective population sizes experience higher levels of relatedness and inbreeding. We discuss considerations for conservation efforts for this and other species that are pollinated by long-distance dispersers.


Land ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 130
Author(s):  
Thanh Thi Nguyen ◽  
Melvin Lippe ◽  
Carsten Marohn ◽  
Tran Duc Vien ◽  
Georg Cadisch

The present study revealed how local socioecological knowledge elucidated during participatory rural appraisals and historical remote sensing data can be combined for analyzing land use change patterns from 1954 to 2007 in northwestern Vietnam. The developed approach integrated farmer decision rules on cropping preferences and location, visual and supervised classification methods, and qualitative information obtained during various forms of participatory appraisals. The integration of historical remote sensing data (aerial photo, Landsat, LISS III) with farmer decision rules showed the feasibility of the proposed method to explain crop distribution patterns for the assessment period of 53 years. Our approach is beneficial for data-limited environments, which is a prevalent situation for many developing regions. The derived land use and crop type dataset was used for understanding how anthropogenic activities altered the study area of the Chieng Khoi commune during the assessment period of five decades, and what potential impact this can have on the natural resource base. The newly developed approach offers a methodological pathway that can be easily transferred to local government authorities for a better understanding of cropping transitions and agricultural expansion trends in data-limited rural landscapes. The detected land use change patterns and upland cropping expansion of more than two hundred percent in 53 years not only revealed the consequences of the interactions and feedback between farmers and their land, but further highlighted the urgent need for implementing sustainable land management practices in the case study watershed of the Chieng Khoi commune and northwestern Vietnam in general.


2020 ◽  
Author(s):  
Michaela Falkenroth ◽  
Andrew N. Green ◽  
J. Andrew G. Cooper ◽  
Gösta Hoffmann

<p>Beachrocks are coastal sediments that are lithified through the precipitation of carbonate cements. It is widely acknowledged that lithofacies in beachrocks are variable and their interpretation is useful when using beachrock as a sea level indicator or when studying shoreline evolution over the centurial to millennial scales. Surprisingly however, the facies variability of beachrocks remains understudied as they are almost exclusively described as seaward dipping, slab-shaped outcrop forming in low energy dissipative beach environments. The Mission Rocks coastline of north-eastern South Africa is in stark contrast. Here the coast comprises an up to 3 m thick raised shore platform of beachrock, where a variety of sedimentological facies are observed. These comprise seaward-dipping planar bedded sandstones and conglomeratic units, often interbedded with bimodally-orientated trough cross bedded sandstones. In our study we aim to use sedimentological facies analysis, petrography and cathodoluminescence to unravel the deposition- and cementation processes of this beachrock facies.</p><p>In particular, an unusual beachrock breccia interposed amongst the breakdown remnants of the platform forms the basis of this paper. The breccia documents a cycle of simultaneous erosional breakdown and depositional buildup of the beachrock platform, a yet undescribed process for the development of beachrock.  Since it forms as a thin veneer (< 0.10 m), with a slightly thicker infill (≤ 0.5 m) amidst erosional hollows and gullies of the + 2 m high rocky platform, it raises into question the necessity of a thick sedimentary overburden, that is typically considered the requirement for beachrock cementation in the mixing zone.  Timing of beachrock formation is constrained by recent anthropogenic activities, as the underlaying platform was mined for building purposes during WWII and it is in these quarry slots and crack that the beachrock is found. While it is generally suspected that beachrocks may form at the centennial scale, evidence for this remains weak. Not only can the interpretation of this facies contribute to our understanding of the long term processes that form and break down beachrocks on high energetic coastlines, it provides insight into rapid beachrock formation and as such its utility as a sea level index point.</p>


2016 ◽  
Vol 16 (3) ◽  
pp. 757-774 ◽  
Author(s):  
Yus Budiyono ◽  
Jeroen C. J. H. Aerts ◽  
Daniel Tollenaar ◽  
Philip J. Ward

Abstract. Given the increasing impacts of flooding in Jakarta, methods for assessing current and future flood risk are required. In this paper, we use the Damagescanner-Jakarta risk model to project changes in future river flood risk under scenarios of climate change, land subsidence, and land use change. Damagescanner-Jakarta is a simple flood risk model that estimates flood risk in terms of annual expected damage, based on input maps of flood hazard, exposure, and vulnerability. We estimate baseline flood risk at USD 186 million p.a. Combining all future scenarios, we simulate a median increase in risk of +180 % by 2030. The single driver with the largest contribution to that increase is land subsidence (+126 %). We simulated the impacts of climate change by combining two scenarios of sea level rise with simulations of changes in 1-day extreme precipitation totals from five global climate models (GCMs) forced by the four Representative Concentration Pathways (RCPs). The results are highly uncertain; the median change in risk due to climate change alone by 2030 is a decrease by −46 %, but we simulate an increase in risk under 12 of the 40 GCM–RCP–sea level rise combinations. Hence, we developed probabilistic risk scenarios to account for this uncertainty. If land use change by 2030 takes places according to the official Jakarta Spatial Plan 2030, risk could be reduced by 12 %. However, if land use change in the future continues at the same rate as the last 30 years, large increases in flood risk will take place. Finally, we discuss the relevance of the results for flood risk management in Jakarta.


2017 ◽  
Vol 23 (5) ◽  
pp. 703-733 ◽  
Author(s):  
Jie Song ◽  
Xinyu Fu ◽  
Ruoniu Wang ◽  
Zhong-Ren Peng ◽  
Zongni Gu

Sign in / Sign up

Export Citation Format

Share Document