The complexity of calculating an accurate carbonate budget

Coral Reefs ◽  
2020 ◽  
Vol 39 (6) ◽  
pp. 1525-1534 ◽  
Author(s):  
Shannon Dee ◽  
Michael Cuttler ◽  
Michael O’Leary ◽  
Jorg Hacker ◽  
Nicola Browne
Keyword(s):  
2010 ◽  
Vol 7 (3) ◽  
pp. 3297-3333 ◽  
Author(s):  
M. Wisshak ◽  
A. Form ◽  
J. Jakobsen ◽  
A. Freiwald

Abstract. The rugged submarine topography of the Azores supports a diverse heterozoan association resulting in intense biotically-controlled carbonate production and accumulation. In order to characterise this cold-water (C) factory a 2-year experiment was carried out to study the biodiversity of hardground communities and for budgeting carbonate production and degradation along a bathymetrical transect from the intertidal to bathyal 500 m depth. Seasonal temperatures peak in September (above a thermocline) and bottom in March (stratification diminishes) with a decrease in amplitude and absolute values with depth, and with tidal-driven short-term fluctuations. Measured seawater stable isotope ratios and levels of dissolved nutrients decrease with depth, as do the calcium carbonate saturation states. The photosynthetic active radiation shows a base of the euphotic zone in ~70 m and a dysphotic limit in ~150 m depth. Bioerosion, being primarily a function of light availability for phototrophic endoliths and grazers feeding upon them, is ~10 times stronger on the illuminated upside versus the shaded underside of substrates in the photic zone, with maximum rates in the intertidal (−631 g/m2/yr). Rates rapidly decline towards deeper waters where bioerosion and carbonate accretion are slow and epibenthic/endolithic communities take years to mature. Accretion rates are highest in the lower euphotic zone (955 g/m2/yr), where the substrate is less prone to hydrodynamic force. Highest rates are found – inversely to bioerosion – on downward facing substrates, suggesting that bioerosion may be a key factor governing the preferential settlement and growth of calcareous epilithobionts on downward facing substrates. In context of a latitudinal gradient, the Azores carbonate cycling rates plot between known values from the cold-temperate Swedish Kosterfjord and the tropical Bahamas, with a total range of two orders in magnitude. Carbonate budget calculations for the bathymetrical transect yield a mean 266.9 kg of epilithic carbonate production, −54.6 kg of bioerosion, and 212.3 kg of annual net carbonate production per metre of coastline in the Azores C factory.


2009 ◽  
Vol 259 (1-4) ◽  
pp. 36-46 ◽  
Author(s):  
J. Titschack ◽  
M. Thierens ◽  
B. Dorschel ◽  
C. Schulbert ◽  
A. Freiwald ◽  
...  

Author(s):  
Jaruwan Mayakun ◽  
Chen-Pan Liao ◽  
Shao-Lun Liu

Abstract Calcareous green alga in the genus Halimeda are important contributors to the marine carbonate budget. Dongsha Island is located in the northernmost South China Sea and is a seagrass-dominated ecosystem with intermixed Halimeda macroloba patches, making it an excellent system to better examine the extent of carbonate contribution by H. macroloba in such an ecosystem. To this end, we examined the standing stock and actual CaCO3 contribution of H. macroloba in the seagrass-dominated ecosystem (herein Dongsha Island) and compared them with those in Halimeda-dominated ecosystems. The density, growth rate, calcification rate and CaCO3 content of H. macroloba at four life stages were investigated. The mean density of H. macroloba was around 8.82 ± 1.57 thalli m−2 and the estimated standing stock was 61,740 to 72,730 thalli. Thalli produced 1 to 2 new segments day−1, giving a growth rate of 0.003 ± 0.001 g dry weight thallus−1 day−1. Calculated algal biomass and annual areal production were 0.03 g m−2 and 9.66 g m−2 year−1. In each square metre of this area, H. macroloba produced 8.82 to 17.64 new segments day−1, accumulating 0.002 ± 0.001 g CaCO3 thallus−1 day−1 or around 6.44 g CaCO3 m−2 year−1. Mean CaCO3 content was 0.32 ± 0.05 g thallus−1. As expected, the growth rate and CaCO3 production of H. macroloba in Dongsha Island were lower than in other studies from Halimeda tropical ecosystems. Overall, this work provides the baseline of carbonate production of H. macroloba in Dongsha Island and relevant systems where the ecosystem is dominated by seagrasses.


2010 ◽  
Vol 90 (2) ◽  
pp. 73-79 ◽  
Author(s):  
Abigail M. Smith ◽  
Anna C.L. Wood ◽  
Michelle F.A. Liddy ◽  
Amy E. Shears ◽  
Ceridwen I. Fraser

1993 ◽  
Vol 115 (4) ◽  
pp. 685-693 ◽  
Author(s):  
T. Le Campion-Alsumard ◽  
J.-C. Romano ◽  
M. Peyrot-Clausade ◽  
J. Le Campion ◽  
R. Paul

2001 ◽  
Vol 50 (1-4) ◽  
pp. 201-221 ◽  
Author(s):  
C Rabouille ◽  
H Stahl ◽  
F Bassinot ◽  
A Tengberg ◽  
J Brunnegard ◽  
...  

2005 ◽  
Vol 96 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Boris Dorschel ◽  
Dierk Hebbeln ◽  
Andres Rüggeberg ◽  
Christian Dullo

2014 ◽  
Vol 281 (1796) ◽  
pp. 20142018 ◽  
Author(s):  
Chris T. Perry ◽  
Gary N. Murphy ◽  
Paul S. Kench ◽  
Evan N. Edinger ◽  
Scott G. Smithers ◽  
...  

Coral cover has declined rapidly on Caribbean reefs since the early 1980s, reducing carbonate production and reef growth. Using a cross-regional dataset, we show that widespread reductions in bioerosion rates—a key carbonate cycling process—have accompanied carbonate production declines. Bioerosion by parrotfish, urchins, endolithic sponges and microendoliths collectively averages 2 G (where G = kg CaCO 3 m −2 yr −1 ) (range 0.96–3.67 G). This rate is at least 75% lower than that reported from Caribbean reefs prior to their shift towards their present degraded state. Despite chronic overfishing, parrotfish are the dominant bioeroders, but erosion rates are reduced from averages of approximately 4 to 1.6 G. Urchin erosion rates have declined further and are functionally irrelevant to bioerosion on most reefs. These changes demonstrate a fundamental shift in Caribbean reef carbonate budget dynamics. To-date, reduced bioerosion rates have partially offset carbonate production declines, limiting the extent to which more widespread transitions to negative budget states have occurred. However, given the poor prognosis for coral recovery in the Caribbean and reported shifts to coral community states dominated by slower calcifying taxa, a continued transition from production to bioerosion-controlled budget states, which will increasingly threaten reef growth, is predicted.


Sign in / Sign up

Export Citation Format

Share Document