Preparation of meander thin-film microsensor and investigation the influence of structural parameters on the giant magnetoimpedance effect

2012 ◽  
Vol 109 (1) ◽  
pp. 205-211 ◽  
Author(s):  
Tao Wang ◽  
Chong Lei ◽  
Jian Lei ◽  
Zhen Yang ◽  
Yong Zhou
2017 ◽  
Vol 121 (12) ◽  
pp. 124501 ◽  
Author(s):  
G. L. S. Vilela ◽  
J. G. Monsalve ◽  
A. R. Rodrigues ◽  
A. Azevedo ◽  
F. L. A. Machado

Sensors ◽  
2017 ◽  
Vol 17 (8) ◽  
pp. 1900 ◽  
Author(s):  
Anna A. Chlenova ◽  
Alexey A. Moiseev ◽  
Mikhail S. Derevyanko ◽  
Aleksandr V. Semirov ◽  
Vladimir N. Lepalovsky ◽  
...  

2021 ◽  
Vol 63 (9) ◽  
pp. 1290
Author(s):  
Г.В. Курляндская ◽  
А.П. Сафронов ◽  
С.В. Щербинин ◽  
И.В. Бекетов ◽  
Ф.А. Бляхман ◽  
...  

This work describes the possibility of fabrication of the large batches of magnetic nanoparticles using electrophysical methods of electric explosion of the wire, laser target evaporation and spark discharge. Bioapplications of nanoparticles require the production of magnetic materials in the form of stabilized aqueous suspensions or hydrogels with magnetic fillers; therefore, some details of the synthesis of these materials and their certification are discussed. The peculiarities of interaction of magnetic nanoparticles with biological systems, the problem of biocompatibility, the possibility of using ferrogel substrates for the needs of cell technologies and regenerative medicine, as well as implication of biomimetics in the development of magnetic biosensors are considered. The results of the analysis of a number of different biological experiments carried out with suspensions of various types, obtained based on the same batch of MNPs are presented. An analysis of examples of magnetic biodetection and existing theoretical approaches will make it possible to assess the prospects of this scientific direction for the creation of highly sensitive thin film sensors based on the giant magnetoimpedance effect for biomedical applications


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1380
Author(s):  
Marwa M. Tharwat ◽  
Ashwag Almalki ◽  
Amr M. Mahros

In this paper, a randomly distributed plasmonic aluminum nanoparticle array is introduced on the top surface of conventional GaAs thin-film solar cells to improve sunlight harvesting. The performance of such photovoltaic structures is determined through monitoring the modification of its absorbance due to changing its structural parameters. A single Al nanoparticle array is integrated over the antireflective layer to boost the absorption spectra in both visible and near-infra-red regimes. Furthermore, the planar density of the plasmonic layer is presented as a crucial parameter in studying and investigating the performance of the solar cells. Then, we have introduced a double Al nanoparticle array as an imperfection from the regular uniform single array as it has different size particles and various spatial distributions. The comparison of performances was established using the enhancement percentage in the absorption. The findings illustrate that the structural parameters of the reported solar cell, especially the planar density of the plasmonic layer, have significant impacts on tuning solar energy harvesting. Additionally, increasing the plasmonic planar density enhances the absorption in the visible region. On the other hand, the absorption in the near-infrared regime becomes worse, and vice versa.


2013 ◽  
Vol 113 (6) ◽  
pp. 063508 ◽  
Author(s):  
J. C. Debnath ◽  
J. H. Kim ◽  
Y. Heo ◽  
A. M. Strydom ◽  
S. X. Dou

2002 ◽  
Vol 65 (6) ◽  
Author(s):  
K. Mandal ◽  
S. Pan Mandal ◽  
M. Vázquez ◽  
S. Puerta ◽  
A. Hernando

2006 ◽  
Vol 55 (4) ◽  
pp. 2014
Author(s):  
Liu Long-Ping ◽  
Zhao Zhen-Jie ◽  
Huang Can-Xing ◽  
Wu Zhi-Ming ◽  
Yang Xie-Long

2021 ◽  
Author(s):  
Mona Rostami ◽  
Ferydon Babaei

Abstract In this study, we reported plasmon-exciton coupling for excitation the surface plexciton in columnar thin film with a central exciton slab using the transfer matrix method in Kretschmann configuration. The optical absorption spectra for surface plasmon polariton, surface exciton and surface plexciton was investigated at different structural parameters in proposed structure. The characteristics of surface optical modes were analyzed and there was an anticrossing behavior between polariton branches of plexciton spectra. Localization of surface modes on interfaces and hybridization between plasmons and excitons at both interfaces of exciton slab were proved by the time-averaged Poynting vector. We found that the types of coupling regimes between plasmons and excitons from weak to strong could be achieved. We found a high Rabi splitting energy 840 meV corresponding to the time period 5 fs which includes to the fast energy transfer between surface plasmon polaritons and surface excitons.


Sign in / Sign up

Export Citation Format

Share Document