Bioactivity and cell viability of Ag+- and Zr4+-co-doped biphasic calcium phosphate

2021 ◽  
Vol 127 (12) ◽  
Author(s):  
Mostafa Mabrouk ◽  
Sahar M. Mousa ◽  
W. A. Abd ElGhany ◽  
Mahmoud T. Abo-elfadl ◽  
Gehan T. El-Bassyouni
2017 ◽  
Vol 3 (4) ◽  
pp. 045004
Author(s):  
Elmira Pourreza ◽  
Ammar Z Alshemary ◽  
Bengi Yilmaz ◽  
Reza Moonesi Rad ◽  
Aysen Tezcaner ◽  
...  

2016 ◽  
Vol 23 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Weizhong Yang ◽  
Yong Yi ◽  
Yuan Ma ◽  
Li Zhang ◽  
Jianwen Gu ◽  
...  

AbstractNano biphasic calcium phosphate (BCP) particles were synthesized using the sol-gel method. As-prepared BCP particles were combined with poly-L-lactide (PLLA) to fabricate nano-BCP/PLLA composite scaffold through a series of processing steps containing solvent self-diffusion, hot-pressing, and particulate leaching. The composite had a suitable porous structure for bone tissue engineering scaffold. In comparison, micro-BCP/PLLA scaffold was studied as well. Nano-BCP particles were distributed homogeneously in the PLLA matrix, and much more tiny crystallites exposed on the surface of the pore wall. Due to the finer inorganic particle distribution in the PLLA phase and the larger area of the bioactive phase exposed in the pore wall surface, nano-BCP/PLLA scaffold had enhanced compressive strength, good bioactivity, and superior cell viability. A nonstoichiometric apatite layer could be rapidly formed on the surface of nano- BCP/PLLA when soaked in simulated body fluid. The MG-63 cell viability of nano-BCP/PLLA scaffold is significantly higher than that of micro-BCP/PLLA scaffold. Therefore, nano-BCP/PLLA composite may be a suitable alternative for bone tissue engineering scaffold.


RSC Advances ◽  
2017 ◽  
Vol 7 (48) ◽  
pp. 30086-30095 ◽  
Author(s):  
Paulina Sobierajska ◽  
Katarzyna Zawisza ◽  
Robert M. Kowalski ◽  
Guillaume Renaudin ◽  
Jean-Marie Nedelec ◽  
...  

The nano-biphasic calcium phosphate co-doped with 1 mol% Er3+ and 5 mol% Yb3+ ions was prepared using modified Pechini's technique.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 617
Author(s):  
Ji-Bong Choi ◽  
Yu-Kyoung Kim ◽  
Seon-Mi Byeon ◽  
Jung-Eun Park ◽  
Tae-Sung Bae ◽  
...  

In the field of bone tissue, maintaining adequate mechanical strength and tissue volume is an important part. Recently, biphasic calcium phosphate (BCP) was fabricated to solve the shortcomings of hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP), and it is widely studied in the field of bone-tissue engineering. In this study, a composite hydrogel was fabricated by applying BCP to gelatin methacrylate (GelMA). It was tested by using a mechanical tester, to characterize the mechanical properties of the prepared composite hydrogel. The fabricated BCP was analyzed through FTIR and XRD. As a result, a different characteristic pattern from hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP) was observed, and it was confirmed that it was successfully bound to the hydrogel. Then, the proliferation and differentiation of preosteoblasts were checked to evaluate cell viability. The analysis results showed high cell viability and relatively high bone differentiation ability in the composite hydrogel to which BCP was applied. These features have been shown to be beneficial for bone regeneration by maintaining the volume and shape of the hydrogel. In addition, hydrogels can be advantageous for clinical use, as they can shape the structure of the material for custom applications.


2015 ◽  
Vol 749 ◽  
pp. 437-440 ◽  
Author(s):  
Chin Wei Chang ◽  
Chia Ling Ko ◽  
Ya Shun Chen ◽  
Jia Horng Lin ◽  
Wen Cheng Chen

This proposal aims to develop a newly, stable, excellent and environmental process of manufacturing scaffolds with virtually identical biphasic calcium phosphate compositions. Calcium phosphate cements (CPCs), which combines calcium orthophosphate powders with a liquid leading to a paste that hardens spontaneously at low temperatures, have potential to be used as a porous template for dental bone grafting substitutes [1,2]. Such newly developed sintering processes having the bone grafts with properties of bioactivity or even bioresorbability would be applied in many clinical setting. Template materials combine calcium orthophosphate powders with a liquid leading to a paste that hardens spontaneously at low temperatures. Hence, CPCs could be applied as scaffolds to support cell/tissue growth [3, 4]. This paper studies CPC scaffolds processing by foaming cement's paste state in which was added phasic stabilizer of magnesia and foaming agent of sucrose. The X-ray diffraction was performed to identify the phases of bone grafting substitutes, and we also used scanning electron microscope to observe the structure and pores of bone grafting substitutes. The cell viability about biocompatibility of developed bone grafting substitutes was examined. The results showed that our bone grafting substitutes produced steady final biphasic products consisting of hydroxyapatite (HA) and beta-tricalcium phosphates (β-TCP). We observed interconnected pores and highly porosity in microstructure of the bone grafting substitutes. The cell viability was over 70 % to make sure that the bone grafting substitutes has excellent biocompatibility. In conclusion, using the slurry of calcium phosphate cements (CPCs) and pores forming agent set into a porous template would be a useful process for manufacturing bone graft substitutes.


2019 ◽  
Vol 33 (8) ◽  
pp. 1035-1052 ◽  
Author(s):  
Subhadip Basu ◽  
Aritri Ghosh ◽  
Ananya Barui ◽  
Bikramjit Basu

In the perspective of dental restorative applications, co-doped bioceramics have not been explored much. From the clinical perspective, a successful dental implant is expected to interact with peri-prosthetic bones, gingival tissue, and surrounding connective tissues. The interaction of implant and implant coating materials with bone tissue is well studied. However, their interaction with surrounding epithelial components needs scientific validation. In this context, the present study aims at quantitative evaluation of the electrical properties of Fe/Sr co-doped biphasic calcium phosphate (BCP) samples and assessment of their cytocompatibility with epithelial (vero) cells. Sr/Fe co-doped BCPs were prepared by sol-gel synthesis technique, with different dopant concentration. Impact of co-doping on conductivity was assessed and interestingly an increase in conductivity with dopant amount was recorded in different co-doped BCPs. Cellular study showed the significant ( p = 0.01) increase in both cellular viability and functionality with increasing conductivity of samples. Higher epithelial cell adhesion indicates that (Sr/Fe) co-doped BCP would be favorable for faster epithelial sealing and also would reduce the chances of infection. Real-time PCR and immunofluorescence studies indicated that the expression of the epithelial marker (E-cadherin) significantly ( p = 0.01) increased in 10, 30 and 40 mol% co-doped samples in comparison to undoped BCP. In contrast to E-cadherin, fold change of β-catenin remains unchanged amongst the co-doped ceramics, implying the absence of tumorigenic potential of (Sr/Fe) co-doped BCP. In addition, immune-fluorescence signatures for cellular polarity are established from enhanced expression PARD3 protein, which has major relevance for cellular morphogenesis and cell division. Summarizing, the present study establishes the efficacy of Sr/Fe co-doped BCPs as a dental implant coating material and its ability to modulate vero cell functionality.


2015 ◽  
Vol 23 (1) ◽  
pp. 1-14
Author(s):  
Sudirman Sahid ◽  
◽  
Nor Shahida Kader Bashah ◽  
Salina Sabudin ◽  
◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2159
Author(s):  
Giovanna Iezzi ◽  
Antonio Scarano ◽  
Luca Valbonetti ◽  
Serena Mazzoni ◽  
Michele Furlani ◽  
...  

Maxillary sinus augmentation is often necessary prior to implantology procedure, in particular in cases of atrophic posterior maxilla. In this context, bone substitute biomaterials made of biphasic calcium phosphates, produced by three-dimensional additive manufacturing were shown to be highly biocompatible with an efficient osteoconductivity, especially when combined with cell-based tissue engineering. Thus, in the present research, osteoinduction and osteoconduction properties of biphasic calcium-phosphate constructs made by direct rapid prototyping and engineered with ovine-derived amniotic epithelial cells or amniotic fluid cells were evaluated. More in details, this preclinical study was performed using adult sheep targeted to receive scaffold alone (CTR), oAFSMC, or oAEC engineered constructs. The grafted sinuses were explanted at 90 days and a cross-linked experimental approach based on Synchrotron Radiation microCT and histology analysis was performed on the complete set of samples. The study, performed taking into account the distance from native surrounding bone, demonstrated that no significant differences occurred in bone regeneration between oAEC-, oAFMSC-cultured, and Ctr samples and that there was a predominant action of the osteoconduction versus the stem cells osteo-induction. Indeed, it was proven that the newly formed bone amount and distribution decreased from the side of contact scaffold/native bone toward the bulk of the scaffold itself, with almost constant values of morphometric descriptors in volumes more than 1 mm from the border.


Sign in / Sign up

Export Citation Format

Share Document