Effect of solution concentration on magnetoelectric properties of barium ferrite ceramics

2021 ◽  
Vol 127 (12) ◽  
Author(s):  
Zhixin Zeng ◽  
Mengshuang Lan ◽  
Qin Zhang ◽  
Heng Wu ◽  
Jizhuang He ◽  
...  
2011 ◽  
Vol 687 ◽  
pp. 189-193 ◽  
Author(s):  
Wen Guo Zhong ◽  
Ying Li Liu ◽  
Yuan Xun Li ◽  
Da Ming Chen ◽  
Kai Yang

The 25%Bi2O3-30%B2O3-10%SiO2-35%ZnO (molar ratio, abbreviated as BBSZ) glass were successfully prepared by solid-phase method. The amount of BBSZ glass varied from 1wt% to 5 wt% was optimized and its effects on the sintering behavior, structure and magnetoelectric properties of the Co / Ti doped M-type barium ferrite were investigated by HP 4291B vector analysis, scanning electron microscopy (SEM) and VSM magnetometer respectively. The testing results show that the ferrite could be well sintered at 900°C with excellent performances when the 3wt% BBSZ is added. The initiative permeability and cut-off frequency are 13.5 and 800MHz, respectiveley, which suggests that this material is a candidate for application in the fabrication of chip inductors by the technology of low temperature cofired ceramics and ferrites (LTCC).


Author(s):  
R. M. Anderson

Aluminum-copper-silicon thin films have been considered as an interconnection metallurgy for integrated circuit applications. Various schemes have been proposed to incorporate small percent-ages of silicon into films that typically contain two to five percent copper. We undertook a study of the total effect of silicon on the aluminum copper film as revealed by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and ion microprobe techniques as a function of the various deposition methods.X-ray investigations noted a change in solid solution concentration as a function of Si content before and after heat-treatment. The amount of solid solution in the Al increased with heat-treatment for films with ≥2% silicon and decreased for films <2% silicon.


2001 ◽  
Vol 25 (4−2) ◽  
pp. 707-710
Author(s):  
X. F. Han ◽  
M. Oogane ◽  
T. Daibou ◽  
K. Yaoita ◽  
Y. Ando ◽  
...  

2016 ◽  
Vol 31 (6) ◽  
pp. 561
Author(s):  
FAN Gui-Fen ◽  
XU Xing ◽  
WANG Kai ◽  
LV Wen-Zhong ◽  
LIANG Fei ◽  
...  

2009 ◽  
Vol 24 (1) ◽  
pp. 97-102
Author(s):  
Xiao-Wei WU ◽  
Yu-Jie FENG ◽  
Han WEI ◽  
Yan-Kun LIU

2014 ◽  
Vol 10 (3) ◽  
pp. 427-431
Author(s):  
Yu Xie ◽  
Jinmei Liu ◽  
Xiaowei Hong ◽  
Zhanggao Le ◽  
Yunhua Gao ◽  
...  
Keyword(s):  

1992 ◽  
Vol 57 (12) ◽  
pp. 2529-2538 ◽  
Author(s):  
Krasimir Ivanov ◽  
Penka Litcheva ◽  
Dimitar Klissurski

Mn-Mo-O catalysts with a different Mo/Mn ratio have been prepared by precipitation. The precipitate composition as a function of solution concentration and pH was studied by X-ray, IR, thermal and chemical methods. Formation of manganese molybdates with MnMoO4.1.5H2O, Mn3Mo3O12.2.5H2O, and Mn3Mo4O15.4H2O composition has been supposed. It is concluded that pure MnMoO4 may be obtained in both acid and alkaline media, the pH values depending on the concentration of the initial solutions. The maximum Mo/Mn ratio in the precipitates is 1.33. The formation of pure Mn3Mo4O15.4H2O is possible in weakly acidic media. This process is favoured by increasing the concentration of initial solutions.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Young-Mi Oh ◽  
Paul V. Nelson ◽  
Dean L. Hesterberg ◽  
Carl E. Niedziela

A soil material high in crystalline Fe hydrous oxides and noncrystalline Al hydrous oxides collected from the Bw horizon of a Hemcross soil containing allophane from the state of Oregon was charged with phosphate-P at rates of 0, 2.2, and 6.5 mg·g−1, added to a soilless root medium at 5% and 10% by volume, and evaluated for its potential to supply phosphate at a low, stable concentration during 14 weeks of tomato (Solanum esculentumL.) seedling growth. Incorporation of the soil material improved pH stability, whether it was charged with phosphate or not. Bulk solution phosphate-P concentrations in the range of 0.13 to 0.34 mg·dm−3were associated with P deficiency. The only treatment that sustained an adequate bulk solution concentration of phosphate-P above 0.34 mg·dm−3for the 14 weeks of testing contained 10% soil material charged with 6.5 mg·g−1P, but initial dissolved P concentrations were too high (>5 mg·g−1phosphate-P) from the standpoint of phosphate leaching. The treatment amended with 10% soil material charged with 2.2 mg·g−1P maintained phosphate-P within an acceptable range of 0.4 to 2.3 mg·dm−3for 48 d in a medium receiving no postplant phosphate fertilization.


Sign in / Sign up

Export Citation Format

Share Document