Co-variation of the surface wind speed and the sea surface temperature over mesoscale eddies in the Gulf Stream region: momentum vertical mixing aspect

2019 ◽  
Vol 37 (4) ◽  
pp. 1154-1164
Author(s):  
Jingjing He ◽  
Xiaopei Lin
2007 ◽  
Vol 24 (6) ◽  
pp. 1131-1142 ◽  
Author(s):  
Anant Parekh ◽  
Rashmi Sharma ◽  
Abhijit Sarkar

A 2-yr (June 1999–June 2001) observation of ocean surface wind speed (SWS) and sea surface temperature (SST) derived from microwave radiometer measurements made by a multifrequency scanning microwave radiometer (MSMR) and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is compared with direct measurements by Indian Ocean buoys. Also, for the first time SWS and SST values of the same period obtained from 40-yr ECMWF Re-Analysis (ERA-40) have been evaluated with these buoy observations. The SWS and SST are shown to have standard deviations of 1.77 m s−1 and 0.60 K for TMI, 2.30 m s−1 and 2.0 K for MSMR, and 2.59 m s−1 and 0.68 K for ERA-40, respectively. Despite the fact that MSMR has a lower-frequency channel, larger values of bias and standard deviation (STD) are found compared to those of TMI. The performance of SST retrieval during the daytime is found to be better than that at nighttime. The analysis carried out for different seasons has raised an important question as to why one spaceborne instrument (TMI) yields retrievals with similar biases during both pre- and postmonsoon periods and the other (MSMR) yields drastically different results. The large bias at low wind speeds is believed to be due to the poorer sensitivity of microwave emissivity variations at low wind speeds. The extreme SWS case study (cyclonic condition) showed that satellite-retrieved SWS captured the trend and absolute magnitudes as reflected by in situ observations, while the model (ERA-40) failed to do so. This result has direct implications on the real-time application of satellite winds in monitoring extreme weather events.


2011 ◽  
Vol 29 (2) ◽  
pp. 393-399
Author(s):  
T. I. Tarkhova ◽  
M. S. Permyakov ◽  
E. Yu. Potalova ◽  
V. I. Semykin

Abstract. Sea surface wind perturbations over sea surface temperature (SST) cold anomalies over the Kashevarov Bank (KB) of the Okhotsk Sea are analyzed using satellite (AMSR-E and QuikSCAT) data during the summer-autumn period of 2006–2009. It is shown, that frequency of cases of wind speed decreasing over a cold spot in August–September reaches up to 67%. In the cold spot center SST cold anomalies reached 10.5 °C and wind speed lowered down to ~7 m s−1 relative its value on the periphery. The wind difference between a periphery and a centre of the cold spot is proportional to SST difference with the correlations 0.5 for daily satellite passes data, 0.66 for 3-day mean data and 0.9 for monthly ones. For all types of data the coefficient of proportionality consists of ~0.3 m s−1 on 1 °C.


2017 ◽  
Vol 30 (1) ◽  
pp. 91-107 ◽  
Author(s):  
Qingtao Song ◽  
Dudley B. Chelton ◽  
Steven K. Esbensen ◽  
Andrew R. Brown

This study presents an assessment of the impact of a March 2006 change in the Met Office operational global numerical weather prediction model through the introduction of a nonlocal momentum mixing scheme. From comparisons with satellite observations of surface wind speed and sea surface temperature (SST), it is concluded that the new parameterization had a relatively minor impact on SST-induced changes in sea surface wind speed in the Met Office model in the September and October 2007 monthly averages over the Agulhas Return Current region considered here. The performance of the new parameterization of vertical mixing was evaluated near the surface layer and further through comparisons with results obtained using a wide range of sensitivity of mixing parameterization to stability in the Weather Research and Forecasting (WRF) Model, which is easily adapted to such sensitivity studies. While the new parameterization of vertical mixing improves the Met Office model response to SST in highly unstable (convective) conditions, it is concluded that significantly enhanced vertical mixing in the neutral to moderately unstable conditions (nondimensional stability [Formula: see text] between 0 and −2) typically found over the ocean is required in order for the model surface wind response to SST to match the satellite observations. Likewise, the reduced mixing in stable conditions in the new parameterization is also relatively small; for the range of the gradient Richardson number typically found over the ocean, the mixing was reduced by a maximum of only 10%, which is too small by more than an order of magnitude to be consistent with the satellite observations.


2014 ◽  
Vol 11 (5) ◽  
pp. 2367-2389
Author(s):  
M. Rouault ◽  
P. Verley ◽  
B. Backeberg

Abstract. Sea surface temperature estimated from the Advanced Microwave Scanning Radiometer E onboard the Aqua satellite and altimetry derived sea level anomalies are used south of the Agulhas Current to identify warm mesoscale eddies presenting a distinct SST perturbation superior to 1 °C to the surrounding ocean. The analysis of 2500 instantaneous charts of equivalent stability neutral wind speed estimates from the SeaWinds scatterometer onboard the QuikScat satellite collocated with sea surface temperature and sea level anomaly show stronger wind speed above warm eddies than surrounding water at all wind directions in about 800 of the 2500 cases. For those cases where the wind is stronger above warm eddies, we do not find any relationship between the increase in surface wind speed and the sea surface temperature perturbation. Sea surface temperature perturbations that we consider range from 1 to 5.5 °C. Sizes of eddies range from 100 to 250 km diameter. Mean background wind speed is about 11 m s−1 with a mean increase above the eddy of 2 m s−1. Wind speed increase of 4 to 7 m s−1 above warm eddies is not uncommon.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2841
Author(s):  
Tolulope Emmanuel Oginni ◽  
Shuang Li ◽  
Hailun He ◽  
Hongwei Yang ◽  
Zheng Ling

Present paper studies the ocean response to super-typhoon Haiyan based on satellite and Argo float data. First, we show the satellite-based surface wind and sea surface temperature during super-typhoon Haiyan, and evaluate the widely-used atmospheric and oceanic analysis-or-reanalysis datasets. Second, we investigate the signals of Argo float, and find the daily-sampling Argo floats capture the phenomena of both vertical-mixing-induced mixed-layer extension and nonlocal subsurface upwelling. Accordingly, the comparisons between Argo float and ocean reanalysis reveal that, the typhoon-induced upwelling in the ocean reanalysis needs to be further improved, meanwhile, the salinity profiles prior to typhoon arrival are significantly biased.


2011 ◽  
Vol 41 (5) ◽  
pp. 857-877 ◽  
Author(s):  
Q. Wang ◽  
J. A. Kalogiros ◽  
S. R. Ramp ◽  
J. D. Paduan ◽  
G. Buzorius ◽  
...  

Abstract Aircraft measurements obtained during the 2003–04 Autonomous Ocean Sampling Network (AOSN-II) project were used to study the effect of small-scale variations of near-surface wind stress on coastal upwelling in the area of Monterey Bay. Using 5-km-long measurement segments at 35 m above the sea surface, wind stress and its curl were calculated with estimated accuracy of 0.02–0.03 N m−2 and 0.1–0.2 N m−2 per 100 kilometers, respectively. The spatial distribution of wind speed, wind stress, stress curl, and sea surface temperature were analyzed for four general wind conditions: northerly or southerly wind along the coastline, onshore flow, and offshore flow. Wind stress and speed maxima frequently were found to be noncollocated as bulk parameterizations imply owing to significant stability and nonhomogeneity effects at cold SST pools. The analyses revealed that complicated processes with different time scales (wind stress field variation, ocean response and upwelling, sea surface currents, and heating by solar radiation) affect the coastal sea surface temperature. It was found that the stress-curl-induced coastal upwelling only dominates in events during which positive curl extended systematically over a significant area (scales larger than 20 km). These events included cases with a northerly wind, which resulted in an expansion fan downstream from Point Año Nuevo (wind speed peaks greater than about 8–10 m s−1), and cases with an offshore/onshore flow, which are characterized by weak background upwelling due to Ekman transport. However, in general, observations show that cold pools of sea surface temperature in the central area of Monterey Bay were advected by ocean surface currents from strong upwelling regions. Aircraft vertical soundings taken in the bay area showed that dominant effects of the lee wave sheltering of coastal mountains resulted in weak atmospheric turbulence and affected the development of the atmospheric boundary layer. This effect causes low wind stress that limits upwelling, especially at the northern part of Monterey Bay. The sea surface temperature is generally warm in this part of the bay because of the shallow oceanic surface layer and solar heating of the upper ocean.


Sign in / Sign up

Export Citation Format

Share Document