Inference on unknown parameters of a Burr distribution under hybrid censoring

2012 ◽  
Vol 54 (3) ◽  
pp. 619-643 ◽  
Author(s):  
Manoj Kumar Rastogi ◽  
Yogesh Mani Tripathi
Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 934
Author(s):  
Yuxuan Zhang ◽  
Kaiwei Liu ◽  
Wenhao Gui

For the purpose of improving the statistical efficiency of estimators in life-testing experiments, generalized Type-I hybrid censoring has lately been implemented by guaranteeing that experiments only terminate after a certain number of failures appear. With the wide applications of bathtub-shaped distribution in engineering areas and the recently introduced generalized Type-I hybrid censoring scheme, considering that there is no work coalescing this certain type of censoring model with a bathtub-shaped distribution, we consider the parameter inference under generalized Type-I hybrid censoring. First, estimations of the unknown scale parameter and the reliability function are obtained under the Bayesian method based on LINEX and squared error loss functions with a conjugate gamma prior. The comparison of estimations under the E-Bayesian method for different prior distributions and loss functions is analyzed. Additionally, Bayesian and E-Bayesian estimations with two unknown parameters are introduced. Furthermore, to verify the robustness of the estimations above, the Monte Carlo method is introduced for the simulation study. Finally, the application of the discussed inference in practice is illustrated by analyzing a real data set.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1219 ◽  
Author(s):  
Shuhan Liu ◽  
Wenhao Gui

As it is often unavoidable to obtain incomplete data in life testing and survival analysis, research on censoring data is becoming increasingly popular. In this paper, the problem of estimating the entropy of a two-parameter Lomax distribution based on generalized progressively hybrid censoring is considered. The maximum likelihood estimators of the unknown parameters are derived to estimate the entropy. Further, Bayesian estimates are computed under symmetric and asymmetric loss functions, including squared error, linex, and general entropy loss function. As we cannot obtain analytical Bayesian estimates directly, the Lindley method and the Tierney and Kadane method are applied. A simulation study is conducted and a real data set is analyzed for illustrative purposes.


2021 ◽  
Vol 50 (5) ◽  
pp. 38-51
Author(s):  
Mohammad Kazemi ◽  
Mina Azizpoor

The hybrid censoring is a mixture of type-I and type-II censoring schemes. This paper presents the statistical inferences of the inverse Weibull distribution parameters when the data are type-I hybrid censored. First, we consider the maximum likelihood estimates of the unknown parameters. It is observed that the maximum likelihood estimates can not be obtained in closed form. We further obtain the Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters under the assumption of independent gamma priors using the importance sampling procedure. We also compute the approximate Bayes estimates using Lindley's approximation technique. The performance of the Bayes estimates have been compared with maximum likelihood estimates through the Monte Carlo Markov chain techniques. Finally, a real data set have been analysed for illustration purpose.


2021 ◽  
Vol 10 (1) ◽  
pp. 4-22
Author(s):  
Gyan Prakash

Our main focus on combining two different approaches, Step-Stress Partially Accelerated Life Test and Type-I Progressive Hybrid censoring criteria in the present article. The fruitfulness of this combination has been investigated by bound lengths for unknown parameters of the Burr Type-XII distribution. Approximate confidence intervals, Bootstrap confidence intervals and One-Sample Bayes prediction bound lengths have been obtained under the above scenario. Particular cases of Type-I Progressive Hybrid censoring (Type-I and Progressive Type-II censoring) has also evaluated under SS-PALT. Optimal stress change time also measured by minimizing the asymptotic variance of ML Estimation. A simulation study based on Metropolis-Hastings algorithm have carried out along with a real data set example.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xuanjia Zuo ◽  
Liang Wang ◽  
Huizhong Lin ◽  
Sanku Dey ◽  
Li Yan

In this paper, the interest is in estimating the Weibull products when the available data is obtained via generalized progressive hybrid censoring. The testing scheme conducts products of interest under a more flexible way and allows collecting failure data in efficient and adaptable experimental scenarios than traditional lifetime testing. When the latent lifetime of products follows Weibull distribution, classical and Bayesian inferences are considered for unknown parameters. The existence and uniqueness of maximum likelihood estimates are established, and approximate confidence intervals are also constructed via asymptotic theory. Bayes point estimates as well as the credible intervals of the parameters are obtained, and correspondingly, Monte Carlo sampling technique is also provided for complex posterior computation. Extensive numerical analysis is carried out, and the results show that the generalized progressive hybrid censoring is an adaptive procedure in practical lifetime experiment, both proposed classical and Bayesian inferential approaches perform satisfactorily, and the Bayesian results are superior to conventional likelihood estimates.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 1032
Author(s):  
Jiayi Tu ◽  
Wenhao Gui

Incomplete data are unavoidable for survival analysis as well as life testing, so more and more researchers are beginning to study censoring data. This paper discusses and considers the estimation of unknown parameters featured by the Kumaraswamy distribution on the condition of generalized progressive hybrid censoring scheme. Estimation of reliability is also considered in this paper. To begin with, the maximum likelihood estimators are derived. In addition, Bayesian estimators under not only symmetric but also asymmetric loss functions, like general entropy, squared error as well as linex loss function, are also offered. Since the Bayesian estimates fail to be of explicit computation, Lindley approximation, as well as the Tierney and Kadane method, is employed to obtain the Bayesian estimates. A simulation research is conducted for the comparison of the effectiveness of the proposed estimators. A real-life example is employed for illustration.


2021 ◽  
Vol 19 (1) ◽  
pp. 2-17
Author(s):  
Gyan Prakash

In the present study, the Pareto model is considered as the model from which observations are to be estimated using a Bayesian approach. Properties of the Bayes estimators for the unknown parameters have studied by using different asymmetric loss functions on hybrid censoring pattern and their risks have compared. The properties of maximum likelihood estimation and approximate confidence length have also been investigated under hybrid censoring. The performances of the procedures are illustrated based on simulated data obtained under the Metropolis-Hastings algorithm and a real data set.


2022 ◽  
Vol 19 (3) ◽  
pp. 2330-2354
Author(s):  
M. Nagy ◽  
◽  
Adel Fahad Alrasheedi

<abstract><p>In this study, we estimate the unknown parameters, reliability, and hazard functions using a generalized Type-I progressive hybrid censoring sample from a Weibull distribution. Maximum likelihood (ML) and Bayesian estimates are calculated using a choice of prior distributions and loss functions, including squared error, general entropy, and LINEX. Unobserved failure point and interval Bayesian predictions, as well as a future progressive censored sample, are also developed. Finally, we run some simulation tests for the Bayesian approach and numerical example on real data sets using the MCMC algorithm.</p></abstract>


2021 ◽  
Vol 9 (5) ◽  
pp. 533-548
Author(s):  
Song Mao ◽  
Bin Liu ◽  
Yimin Shi

Abstract This paper investigates a simple step-stress accelerated lifetime test (SSALT) model for the inferential analysis of exponential competing risks data. A generalized type-I hybrid censoring scheme is employed to improve the efficiency and controllability of the test. Firstly, the MLEs for parameters are established based on the cumulative exposure model (CEM). Then the conditional moment generating function (MGF) for unknown parameters is set up using conditional expectation and multiple integral techniques. Thirdly, confidence intervals (CIs) are constructed by the exact MGF-based method, the approximate normality-based method, and the bias-corrected and accelerated (BCa) percentile bootstrap method. Finally, we present simulation studies and an illustrative example to compare the performances of different methods.


2021 ◽  
Vol 11 (13) ◽  
pp. 6000
Author(s):  
Khalaf S. Sultan ◽  
Walid Emam

In this paper, we use the combined-unified hybrid censoring samples to obtain the maximum likelihood estimates of the unknown parameters, survival, and hazard functions of Pareto distribution. Next, we discuss some efficiency criteria of the maximum likelihood estimators, including; the unbiasedness, consistency, and sufficiency. Additionally, we use MCMC to obtain the Bayesian estimates of the unknown parameters. In addition, we calculate the intervals estimation of the unknown parameters. Finally, we analyze a set of real data in view of the theoretical findings of the paper.


Sign in / Sign up

Export Citation Format

Share Document