Plant growth promotion by Bacillus amyloliquefaciens FZB45 depends on inoculum rate and P-related soil properties

2010 ◽  
Vol 46 (8) ◽  
pp. 835-844 ◽  
Author(s):  
Camilo A. Ramírez ◽  
Joseph W. Kloepper
2012 ◽  
Vol 27 (4) ◽  
pp. 477-482 ◽  
Author(s):  
Pankaj Kumar Srivastava ◽  
Belle Damodara Shenoy ◽  
Manjul Gupta ◽  
Aradhana Vaish ◽  
Shivee Mannan ◽  
...  

2019 ◽  
Vol 8 (48) ◽  
Author(s):  
Andrey V. Mardanov ◽  
Elena P. Chizhevskaya ◽  
Alexander M. Lazarev ◽  
Andrey L. Rakitin ◽  
Alexey V. Beletsky ◽  
...  

The endophytic strains Bacillus amyloliquefaciens V417 and V167 were isolated from cultured grape plants. We sequenced the complete genomes of these strains to reveal their potential beneficial properties for plant growth promotion and control of fungal pathogens. Genes responsible for the synthesis of antimicrobial compounds and siderophores were identified.


2007 ◽  
Vol 20 (6) ◽  
pp. 619-626 ◽  
Author(s):  
ElSorra E. Idris ◽  
Domingo J. Iglesias ◽  
Manuel Talon ◽  
Rainer Borriss

Phytohormone-like acting compounds previously have been suggested to be involved in the phytostimulatory action exerted by the plant-beneficial rhizobacterium Bacillus amyloliquefaciens FZB42. Analyses by high-performance liquid chromatography and gas chromatography-mass spectrometry performed with culture filtrates of FZB42 demonstrated the presence of indole-3-acetic acid (IAA), corroborating it as one of the pivotal plant-growth-promoting substances produced by this bacterium. In the presence of 5 mM tryptophan, a fivefold increase in IAA secretion was registered. In addition, in the trp auxotrophic strains E101 (ΔtrpBA) and E102 (ΔtrpED), and in two other strains bearing knockout mutations in genes probably involved in IAA metabolism, E103 (ΔysnE, putative IAA transacetylase) and E105 (ΔyhcX, putative nitrilase), the concentration of IAA in the culture filtrates was diminished. Three of these mutant strains were less efficient in promoting plant growth, indicating that the Trp-dependent synthesis of auxins and plant growth promotion are functionally related in B. amyloliquefaciens.


2020 ◽  
Vol 21 (22) ◽  
pp. 8740
Author(s):  
Daria Chlebek ◽  
Artur Pinski ◽  
Joanna Żur ◽  
Justyna Michalska ◽  
Katarzyna Hupert-Kocurek

Endophytic bacteria hold tremendous potential for use as biocontrol agents. Our study aimed to investigate the biocontrol activity of Pseudomonas fluorescens BRZ63, a new endophyte of oilseed rape (Brassica napus L.) against Rhizoctonia solani W70, Colletotrichum dematium K, Sclerotinia sclerotiorum K2291, and Fusarium avenaceum. In addition, features crucial for biocontrol, plant growth promotion, and colonization were assessed and linked with the genome sequences. The in vitro tests showed that BRZ63 significantly inhibited the mycelium growth of all tested pathogens and stimulated germination and growth of oilseed rape seedlings treated with fungal pathogens. The BRZ63 strain can benefit plants by producing biosurfactants, siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and ammonia as well as phosphate solubilization. The abilities of exopolysaccharide production, autoaggregation, and biofilm formation additionally underline its potential to plant colonization and hence biocontrol. The effective colonization properties of the BRZ63 strain were confirmed by microscopy observations of EGFP-expressing cells colonizing the root surface and epidermal cells of Arabidopsis thaliana Col-0. Genome mining identified many genes related to the biocontrol process, such as transporters, siderophores, and other secondary metabolites. All analyses revealed that the BRZ63 strain is an excellent endophytic candidate for biocontrol of various plant pathogens and plant growth promotion.


Sign in / Sign up

Export Citation Format

Share Document