scholarly journals Complete Genome Sequences of Endophytic Bacilli Isolated from Grapevine Plants

2019 ◽  
Vol 8 (48) ◽  
Author(s):  
Andrey V. Mardanov ◽  
Elena P. Chizhevskaya ◽  
Alexander M. Lazarev ◽  
Andrey L. Rakitin ◽  
Alexey V. Beletsky ◽  
...  

The endophytic strains Bacillus amyloliquefaciens V417 and V167 were isolated from cultured grape plants. We sequenced the complete genomes of these strains to reveal their potential beneficial properties for plant growth promotion and control of fungal pathogens. Genes responsible for the synthesis of antimicrobial compounds and siderophores were identified.

2020 ◽  
Vol 21 (22) ◽  
pp. 8740
Author(s):  
Daria Chlebek ◽  
Artur Pinski ◽  
Joanna Żur ◽  
Justyna Michalska ◽  
Katarzyna Hupert-Kocurek

Endophytic bacteria hold tremendous potential for use as biocontrol agents. Our study aimed to investigate the biocontrol activity of Pseudomonas fluorescens BRZ63, a new endophyte of oilseed rape (Brassica napus L.) against Rhizoctonia solani W70, Colletotrichum dematium K, Sclerotinia sclerotiorum K2291, and Fusarium avenaceum. In addition, features crucial for biocontrol, plant growth promotion, and colonization were assessed and linked with the genome sequences. The in vitro tests showed that BRZ63 significantly inhibited the mycelium growth of all tested pathogens and stimulated germination and growth of oilseed rape seedlings treated with fungal pathogens. The BRZ63 strain can benefit plants by producing biosurfactants, siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and ammonia as well as phosphate solubilization. The abilities of exopolysaccharide production, autoaggregation, and biofilm formation additionally underline its potential to plant colonization and hence biocontrol. The effective colonization properties of the BRZ63 strain were confirmed by microscopy observations of EGFP-expressing cells colonizing the root surface and epidermal cells of Arabidopsis thaliana Col-0. Genome mining identified many genes related to the biocontrol process, such as transporters, siderophores, and other secondary metabolites. All analyses revealed that the BRZ63 strain is an excellent endophytic candidate for biocontrol of various plant pathogens and plant growth promotion.


2012 ◽  
Vol 194 (23) ◽  
pp. 6649-6650 ◽  
Author(s):  
Ju Yeon Song ◽  
Min-Jung Kwak ◽  
Kwang Youll Lee ◽  
Hyun Gi Kong ◽  
Byung Kwon Kim ◽  
...  

ABSTRACTBurkholderia pyrrociniaCH-67 was isolated from forest soil as a biocontrol agent to be utilized in agriculture. Here, we report the 8.05-Mb draft genome sequence of this bacterium. Its genome contains genes involved in biosynthesis of secondary metabolites and plant growth promotion, which may contribute to probiotic effects on plants.


2019 ◽  
Vol 8 (4) ◽  
Author(s):  
Enock Mpofu ◽  
Felipe Vejarano ◽  
Chiho Suzuki-Minakuchi ◽  
Yoshiyuki Ohtsubo ◽  
Masataka Tsuda ◽  
...  

Bacillus licheniformis strain TAB7 degrades short-chain fatty acids responsible for offensive odor in manure and is used as a deodorant in a compost-deodorizing technology. Here, we report the complete genome sequence of strain TAB7, which consists of a 4.37-Mb chromosome and two plasmids (42 kb and 31 kb).


2016 ◽  
Vol 82 (6) ◽  
pp. 1734-1744 ◽  
Author(s):  
Yanmei Chen ◽  
Yuanqing Chao ◽  
Yaying Li ◽  
Qingqi Lin ◽  
Jun Bai ◽  
...  

ABSTRACTPlant-associated bacteria are of great interest because of their potential use in phytoremediation. However, their ability to survive and promote plant growth in metal-polluted soils remains unclear. In this study, a soilborne Cd-resistant bacterium was isolated and identified asEnterobactersp. strain EG16. It tolerates high external Cd concentrations (Cd2+MIC, >250 mg liter−1) and is able to produce siderophores and the plant hormone indole-3-acetic acid (IAA), both of which contribute to plant growth promotion. Surface biosorption in this strain accounted for 31% of the total Cd accumulated. The potential presence of cadmium sulfide, shown by energy-dispersive X-ray (EDX) analysis, suggested intracellular Cd binding as a Cd response mechanism of the isolate. Cd exposure resulted in global regulation at the transcriptomic level, with the bacterium switching to an energy-conserving mode by inhibiting energy-consuming processes while increasing the production of stress-related proteins. The stress response system included increased import of sulfur and iron, which become deficient under Cd stress, and the redirection of sulfur metabolism to the maintenance of intracellular glutathione levels in response to Cd toxicity. Increased production of siderophores, responding to Cd-induced Fe deficiency, not only is involved in the Cd stress response systems of EG16 but may also play an important role in promoting plant growth as well as alleviating the Cd-induced inhibition of IAA production. The newly isolated strain EG16 may be a suitable candidate for microbially assisted phytoremediation due to its high resistance to Cd and its Cd-induced siderophore production, which is likely to contribute to plant growth promotion.


Author(s):  
Di Fan ◽  
Donald L. Smith

There are pressing needs to reduce the use of agrochemicals, and PGPR are receiving increasing interest in plant growth promotion and disease protection. This study follows up our previous report that the four newly isolated rhizobacteria promote the growth of Arabidopsis thaliana .


2019 ◽  
Vol 85 (19) ◽  
Author(s):  
Evan Mayer ◽  
Patricia Dörr de Quadros ◽  
Roberta Fulthorpe

ABSTRACT A collection of bacterial endophytes isolated from stem tissues of plants growing in soils highly contaminated with petroleum hydrocarbons were screened for plant growth-promoting capabilities. Twenty-seven endophytic isolates significantly improved the growth of Arabidopsis thaliana plants in comparison to that of uninoculated control plants. The five most beneficial isolates, one strain each of Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens and two strains of Plantibacter flavus were further examined for growth promotion in Arabidopsis, lettuce, basil, and bok choy plants. Host-specific plant growth promotion was observed when plants were inoculated with the five bacterial strains. P. flavus strain M251 increased the total biomass and total root length of Arabidopsis plants by 4.7 and 5.8 times, respectively, over that of control plants and improved lettuce and basil root growth, while P. flavus strain M259 promoted Arabidopsis shoot and root growth, lettuce and basil root growth, and bok choy shoot growth. A genome comparison between P. flavus strains M251 and M259 showed that both genomes contain up to 70 actinobacterial putative plant-associated genes and genes involved in known plant-beneficial pathways, such as those for auxin and cytokinin biosynthesis and 1-aminocyclopropane-1-carboxylate deaminase production. This study provides evidence of direct plant growth promotion by Plantibacter flavus. IMPORTANCE The discovery of new plant growth-promoting bacteria is necessary for the continued development of biofertilizers, which are environmentally friendly and cost-efficient alternatives to conventional chemical fertilizers. Biofertilizer effects on plant growth can be inconsistent due to the complexity of plant-microbe interactions, as the same bacteria can be beneficial to the growth of some plant species and neutral or detrimental to others. We examined a set of bacterial endophytes isolated from plants growing in a unique petroleum-contaminated environment to discover plant growth-promoting bacteria. We show that strains of Plantibacter flavus exhibit strain-specific plant growth-promoting effects on four different plant species.


Author(s):  
Sorina DINU ◽  
Oana Alina BOIU-SICUIA ◽  
Florica CONSTANTINESCU

Some Bacillus based bioproducts were analyzed for their plant growth promotion and Rhizoctonia solani biocontrol potential in potato plants. The bioproducts were formulated as concentrated aqueous suspension, each containing one of the following plant beneficial bacteria: Bacillus safensis Rd.b2, Bacillus spp. 75.1s and Cp.b4 strains. These were applied on potato seeding material in order to evaluate plant growth promotion effects. The biocontrol efficacy was also evaluated, using Rhizoctonia solani DSM 63002 as plant pathogen, and Prestige 290FS as reference chemical treatment.In the plant growth-promotion experiments, several biologic parameters were biometrically evaluated. Best results regarding plant growth and vigor were obtained using CropMax, a commercial phytostimulatory product. However, the bacterial treatment with Bacillus spp. Cp.b4 and 75.1s showed an improved plant growth compared to the untreated control. An efficacy of 93.75% against Rhizoctonia dumping-off was registered when using the Prestige 290FS chemical control. Mix treatments based on this pesticide, in low dose, combined with Cp.b4 or 75.1s biocontrol strains significantly reduced the pathogenic attack, showing 85 to 87.5% efficacy.The present research demonstrated that the bacterial bioproducts based on Bacillus spp. 75.1s and Cp.b4 strains increase plant growth and are highly effective in controlling Rhizoctonia attack in potato plants.


2008 ◽  
Vol 54 (4) ◽  
pp. 248-258 ◽  
Author(s):  
Russell K. Hynes ◽  
Grant C.Y. Leung ◽  
Danielle L.M. Hirkala ◽  
Louise M. Nelson

The use of beneficial soil microorganisms as agricultural inputs for improved crop production requires selection of rhizosphere-competent microorganisms with plant growth-promoting attributes. A collection of 563 bacteria originating from the roots of pea, lentil, and chickpea grown in Saskatchewan was screened for several plant growth-promoting traits, for suppression of legume fungal pathogens, and for plant growth promotion. Siderophore production was detected in 427 isolates (76%), amino-cyclopropane-1-carboxylic acid (ACC) deaminase activity in 29 isolates (5%), and indole production in 38 isolates (7%). Twenty-six isolates (5%) suppressed the growth of Pythium sp. strain p88-p3, 40 isolates (7%) suppressed the growth of Fusarium avenaceum , and 53 isolates (9%) suppressed the growth of Rhizoctonia solani CKP7. Seventeen isolates (3%) promoted canola root elongation in a growth pouch assay, and of these, 4 isolates promoted the growth of lentil and one isolate promoted the growth of pea. Fatty acid profile analysis and 16S rRNA sequencing of smaller subsets of the isolates that were positive for the plant growth-promotion traits tested showed that 39%–42% were members of the Pseudomonadaceae and 36%–42% of the Enterobacteriaceae families. Several of these isolates may have potential for development as biofertilizers or biopesticides for western Canadian legume crops.


Sign in / Sign up

Export Citation Format

Share Document