Ocean heat transport and its relationship to ocean circulation in the CMIP coupled models

2003 ◽  
Vol 20 (2) ◽  
pp. 153-174 ◽  
Author(s):  
Y. Jia
2011 ◽  
Vol 24 (4) ◽  
pp. 992-1012 ◽  
Author(s):  
David Ferreira ◽  
John Marshall ◽  
Brian Rose

Abstract Multiple equilibria in a coupled ocean–atmosphere–sea ice general circulation model (GCM) of an aquaplanet with many degrees of freedom are studied. Three different stable states are found for exactly the same set of parameters and external forcings: a cold state in which a polar sea ice cap extends into the midlatitudes; a warm state, which is ice free; and a completely sea ice–covered “snowball” state. Although low-order energy balance models of the climate are known to exhibit intransitivity (i.e., more than one climate state for a given set of governing equations), the results reported here are the first to demonstrate that this is a property of a complex coupled climate model with a consistent set of equations representing the 3D dynamics of the ocean and atmosphere. The coupled model notably includes atmospheric synoptic systems, large-scale circulation of the ocean, a fully active hydrological cycle, sea ice, and a seasonal cycle. There are no flux adjustments, with the system being solely forced by incoming solar radiation at the top of the atmosphere. It is demonstrated that the multiple equilibria owe their existence to the presence of meridional structure in ocean heat transport: namely, a large heat transport out of the tropics and a relatively weak high-latitude transport. The associated large midlatitude convergence of ocean heat transport leads to a preferred latitude at which the sea ice edge can rest. The mechanism operates in two very different ocean circulation regimes, suggesting that the stabilization of the large ice cap could be a robust feature of the climate system. Finally, the role of ocean heat convergence in permitting multiple equilibria is further explored in simpler models: an atmospheric GCM coupled to a slab mixed layer ocean and an energy balance model.


2020 ◽  
Author(s):  
Ralf Hand ◽  
Jürgen Bader ◽  
Daniela Matei ◽  
Rohit Ghosch ◽  
Johann Jungclaus

<p>The question, whether ocean dynamics are relevant for basin-scale North Atlantic decadal temperature variability is subject of ongoing discussions. Here, we analyze a set of simulations with a single climate model, consisting of a 2000-year pre-industrial control experiment, a 100-member historical ensemble, and a 100-member ensemble forced with an incremental CO2 increase by 1%/year. Compared to previous approaches, our setup offers the following advantages: First, the large ensemble size allows to robustly separate internally and externally forced variability and to robustly detect statistical links between different quantities. Second, the availability of different scenarios allows to investigate the role of the background state for drivers of the<br>variability. We find strong evidence that ocean dynamics, particularly ocean heat transport variations, form an important contribution to generate the Atlantic Multidecadal Variability (AMV) in the Max Planck Institute Earth System Model (MPI- ESM). Particularly the Northwest North Atlantic is substantially affected by ocean circulation for the historical and pre-industrial simulations. Anomalies of the Labrador Sea deep ocean density precede a change of the Atlantic Meridional Overturning Circulation (AMOC) and heat advection to the region south of Greenland.<br>Under strong CO2 forcing the AMV-SST regression pattern shows crucial changes: SST variability in the north western part of the North Atlantic is strongly reduced, so that the AMV pattern in this scenario is dominated by the low-latitude branch. We found a connection to changes in the deep water formation, that cause a strong reduction of the mean AMOC and its variability. Consequently, ocean heat transport convergence becomes less important for the SST variability south of Greenland.</p>


2017 ◽  
Vol 30 (10) ◽  
pp. 3529-3547 ◽  
Author(s):  
Xiaojuan Liu ◽  
David S. Battisti ◽  
Aaron Donohoe

Abstract Summertime insolation intensified in the Northern Hemisphere during the mid-Holocene, resulting in enhanced monsoonal precipitation. In this study, the authors examine the changes in the annual-mean tropical precipitation as well as changes in atmospheric circulation and upper-ocean circulation in the mid-Holocene compared to the preindustrial climate, as simulated by 12 coupled climate models from PMIP3. In addition to the predominant zonally asymmetric changes in tropical precipitation, there is a small northward shift in the location of intense zonal-mean precipitation (mean ITCZ) in the mid-Holocene in the majority (9 out of 12) of the coupled climate models. In contrast, the shift is southward in simulations using an atmospheric model coupled to a slab ocean. The northward mean ITCZ shift in the coupled simulations is due to enhanced northward ocean heat transport across the equator [OHT(EQ)], which demands a compensating southward atmospheric energy transport across the equator, accomplished by shifting the Hadley cell and hence the mean ITCZ northward. The increased northward OHT(EQ) is primarily accomplished by changes in the upper-ocean gyre circulation in the tropical Pacific acting on the zonally asymmetric climatological temperature distribution. The gyre intensification results from the intensification of the monsoonal winds in the Northern Hemisphere and the weakening of the winds in the Southern Hemisphere, both of which are forced directly by the insolation changes.


2014 ◽  
Vol 29 (5) ◽  
pp. 454-469 ◽  
Author(s):  
Deborah J. Thomas ◽  
Robert Korty ◽  
Matthew Huber ◽  
Jessica A. Schubert ◽  
Brian Haines

2021 ◽  
Vol 568 ◽  
pp. 117033
Author(s):  
Emily R. Newsom ◽  
Andrew F. Thompson ◽  
Jess F. Adkins ◽  
Eric D. Galbraith

1993 ◽  
Vol 8 (6) ◽  
pp. 785-798 ◽  
Author(s):  
Eric J. Barron ◽  
William H. Peterson ◽  
David Pollard ◽  
Starley Thompson

2021 ◽  
Author(s):  
Jing Jin ◽  
Antony J. Payne ◽  
William Seviour ◽  
Christopher Bull

<p>The basal melting of the Amery Ice Shelf (AIS) in East Antarctica and its connections with the oceanic circulation are investigated by a regional ocean model. The simulated estimations of net melt rate over AIS from 1976 to 2005 vary from 1 to 2 m/yr depending primarily due to inflow of modified Circumpolar Deep Water (mCDW). Prydz Bay Eastern Costal Current (PBECC) and the eastern branch of Prydz Bay Gyre (PBG) are identified as two main mCDW intrusion pathways. The oceanic heat transport from both PBECC and PBG has significant seasonal variability, which is associated with the Antarctic Slope Current. The onshore heat transport has a long-lasting effect on basal melting. The basal melting is primarily driven by the inflowing water masses though a positive feedback mechanism. The intruding warm water masses destabilize the thermodynamic structure in the sub-ice shelf cavity therefore enhancing the overturning circulations, leading to further melting due to increasing heat transport. However, the inflowing saltier water masses due to sea-ice formation could offset the effect of temperature through stratifying the thermodynamic structure, then suppressing the overturning circulation and reducing the basal melting.</p>


2005 ◽  
Vol 57 (4) ◽  
pp. 662-675 ◽  
Author(s):  
CELINE HERWEIJER ◽  
RICHARD SEAGER ◽  
MICHAEL WINTON ◽  
AMY CLEMENT

2016 ◽  
Vol 29 (2) ◽  
pp. 689-704 ◽  
Author(s):  
Marius Årthun ◽  
Tor Eldevik

Abstract A potential for climate predictability is rooted in anomalous ocean heat transport and its consequent influence on the atmosphere above. Here the propagation, drivers, and atmospheric impact of heat anomalies within the northernmost limb of the Atlantic meridional overturning circulation are assessed using a multicentury climate model simulation. Consistent with observation-based inferences, simulated heat anomalies propagate from the eastern subpolar North Atlantic into and through the Nordic seas. The dominant time scale of associated climate variability in the northern seas is 14 years, including that of observed sea surface temperature and modeled ocean heat content, air–sea heat flux, and surface air temperature. A heat budget analysis reveals that simulated ocean heat content anomalies are driven by poleward ocean heat transport, primarily related to variable volume transport. The ocean’s influence on the atmosphere, and hence regional climate, is manifested in the model by anomalous ocean heat convergence driving subsequent changes in surface heat fluxes and surface air temperature. The documented northward propagation of thermohaline anomalies in the northern seas and their consequent imprint on the regional atmosphere—including the existence of a common decadal time scale of variability—detail a key aspect of eventual climate predictability.


Sign in / Sign up

Export Citation Format

Share Document