The Arctic surface energy budget as simulated with the IPCC AR4 AOGCMs

2007 ◽  
Vol 29 (2-3) ◽  
pp. 131-156 ◽  
Author(s):  
Asgeir Sorteberg ◽  
Vladimir Kattsov ◽  
John E. Walsh ◽  
Tatyana Pavlova
2021 ◽  
Author(s):  
Raleigh Grysko ◽  
Jacqueline Oehri ◽  
Gabriela Schaepman-Strub

<div> <p>The Arctic is undergoing amplified climate warming, and temperature and precipitation are predicted to increase even more in the future. Increased climate warming is indicative of changes in the surface energy budget, which lies at the heart of the carbon and water budget. The surface energy budget is an important driver of many earth system processes, and yet has received little attention in the past.</p> </div><div> <p>The goal of this study is to further develop our understanding in the spatio-temporal variability of Arctic surface energy fluxes. Specifically, we will investigate the magnitude and dependence on changes in energy flux drivers interannually at different sites across the Arctic. We used<span> </span><em>in situ</em><span> </span>data from 10 sites gathered from the FLUXNET2015, Arctic Observatory Network, and European Fluxes Database Center repositories. All study sites are of 60° N or higher and spread across the Arctic. The chosen sites include Chokurdakh, Russia (147.5° E, 70.8° N), Cherskiy, Russia (161.3° E, 68.6° N), Kaamanen,, Finland (27.3° E, 69.1° N), Imnavait Creek, USA (-149.3° E, 68.6° N), Zackenberg Heath, Greenland (-20.6° E, 74.5° N), Tiksi, Russia (128.9° E, 71.6° N), Sodankyla, Finland (26.6° E, 67.4° N), Poker Flat, USA (-147.5° E, 65.1° N), Nuuk, Greenland (-51.4° E, 64.1° N), and Samoylov, Russia (126.5° E, 72.4° N). Using these data, we analyzed the interannual variability of surface energy fluxes including net radiation, sensible, latent, and ground heat fluxes, and Bowen ratio including their dependence on potential drivers, such as temperature, wind speed, atmospheric stability, and vapor pressure deficit.</p> </div><p>Our results on interannual variability in surface energy fluxes and flux drivers inform long term climate model simulations across the Arctic, which is critical for the improved prediction of the state and development of the surface energy budget and drivers under current and future conditions in this vulnerable, rapidly changing, and understudied region.</p>


2014 ◽  
Vol 14 (1) ◽  
pp. 427-445 ◽  
Author(s):  
G. de Boer ◽  
M. D. Shupe ◽  
P. M. Caldwell ◽  
S. E. Bauer ◽  
O. Persson ◽  
...  

Abstract. Atmospheric measurements from the Arctic Summer Cloud Ocean Study (ASCOS) are used to evaluate the performance of three atmospheric reanalyses (European Centre for Medium Range Weather Forecasting (ECMWF)-Interim reanalysis, National Center for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) reanalysis, and NCEP-DOE (Department of Energy) reanalysis) and two global climate models (CAM5 (Community Atmosphere Model 5) and NASA GISS (Goddard Institute for Space Studies) ModelE2) in simulation of the high Arctic environment. Quantities analyzed include near surface meteorological variables such as temperature, pressure, humidity and winds, surface-based estimates of cloud and precipitation properties, the surface energy budget, and lower atmospheric temperature structure. In general, the models perform well in simulating large-scale dynamical quantities such as pressure and winds. Near-surface temperature and lower atmospheric stability, along with surface energy budget terms, are not as well represented due largely to errors in simulation of cloud occurrence, phase and altitude. Additionally, a development version of CAM5, which features improved handling of cloud macro physics, has demonstrated to improve simulation of cloud properties and liquid water amount. The ASCOS period additionally provides an excellent example of the benefits gained by evaluating individual budget terms, rather than simply evaluating the net end product, with large compensating errors between individual surface energy budget terms that result in the best net energy budget.


2017 ◽  
Vol 44 (20) ◽  
pp. 10,654-10,661 ◽  
Author(s):  
Sukyoung Lee ◽  
Tingting Gong ◽  
Steven B. Feldstein ◽  
James A. Screen ◽  
Ian Simmonds

2010 ◽  
Vol 37 (7-8) ◽  
pp. 1643-1660 ◽  
Author(s):  
Joseph Sedlar ◽  
Michael Tjernström ◽  
Thorsten Mauritsen ◽  
Matthew D. Shupe ◽  
Ian M. Brooks ◽  
...  

2020 ◽  
Author(s):  
Raleigh Grysko ◽  
Elena Plekhanova ◽  
Jacqueline Oehri ◽  
Gabriela Schaepman-Strub

<p>The Arctic is undergoing amplified climate change and forecasts predict increased warming and precipitation in the future. How changes in temperature and precipitation affect the partitioning of the Arctic land surface energy budget is not clear, despite the importance of both the Arctic region and the surface energy budget in earth system processes at local, regional, and global scales.</p><p>We will investigate the Arctic tundra energy budget and the relative importance of biotic and abiotic drivers. Specifically, we are experimentally testing effects of changing summer precipitation on the partitioning of the surface energy budget by simulating precipitation-based climate extremes – extreme drought and extreme precipitation totals.</p><p>We will present a literature-based synthesis of the expected impact of drought and extreme rainfall on the energy budget components of the tundra land surface and a description of the experimental design and treatments. The experiment has been established at a long-term Siberian tundra test site (71°N, 147°E). Extreme drought (precipitation) is being simulated by removing (adding) a predetermined fraction of ambient precipitation from (to) the test plots. Control plots, where ambient precipitation is not modified, are used as a baseline. Plot selection, soil sampling, and installation of below-ground sensors were performed during the past two summers, while setup of shelters and water-addition installations were completed early July 2019.</p><p>With our results on energy budget behavior change under future summer precipitation scenarios, we expect to inform mechanistic and statistic modeling of species distributions, ecosystem functions, and climate feedback in the Arctic tundra.</p>


2021 ◽  
pp. 1-49
Author(s):  
Christopher J. Cardinale ◽  
Brian E. J. Rose ◽  
Andrea L. Lang ◽  
Aaron Donohoe

AbstractThe flux of moist static energy into the polar regions plays a key role in the energy budget and climate of the polar regions. While usually studied from a vertically integrated perspective (Fwall), this analysis examines its vertical structure, using the NASA-MERRA-2 reanalysis to compute climatological and anomalous fluxes of sensible, latent, and potential energy across 70°N and 65°S for the period 1980–2016. The vertical structure of the climatological flux is bimodal, with peaks in the mid- to lower-troposphere and mid- to upper-stratosphere. The near zero flux at the tropopause defines the boundary between stratospheric (Fstrat) and tropospheric (Ftrop) contributions to Fwall. Especially at 70°N, Fstrat is found to be important to the climatology and variability of Fwall, contributing 20.9 Wm−2 to Fwall (19% of Fwall) during the winter and explaining 23% of the variance of Fwall. During winter, an anomalous poleward increase in Fstrat preceding a sudden stratospheric warming is followed by an increase in outgoing longwave radiation anomalies, with little influence on the surface energy budget of the Arctic. Conversely, a majority of the energy input by an anomalous poleward increase in Ftrop goes toward warming the Arctic surface. Ftrop is found to be a better metric than Fwall for evaluating the influence of atmospheric circulations on the Arctic surface climate.


2019 ◽  
Vol 32 (3) ◽  
pp. 769-789 ◽  
Author(s):  
Michael Tjernström ◽  
Matthew D. Shupe ◽  
Ian M. Brooks ◽  
Peggy Achtert ◽  
John Prytherch ◽  
...  

During the Arctic Clouds in Summer Experiment (ACSE) in summer 2014 a weeklong period of warm-air advection over melting sea ice, with the formation of a strong surface temperature inversion and dense fog, was observed. Based on an analysis of the surface energy budget, we formulated the hypothesis that, because of the airmass transformation, additional surface heating occurs during warm-air intrusions in a zone near the ice edge. To test this hypothesis, we explore all cases with surface inversions occurring during ACSE and then characterize the inversions in detail. We find that they always occur with advection from the south and are associated with subsidence. Analyzing only inversion cases over sea ice, we find two categories: one with increasing moisture in the inversion and one with constant or decreasing moisture with height. During surface inversions with increasing moisture with height, an extra 10–25 W m−2 of surface heating was observed, compared to cases without surface inversions; the surface turbulent heat flux was the largest single term. Cases with less moisture in the inversion were often cloud free and the extra solar radiation plus the turbulent surface heat flux caused by the inversion was roughly balanced by the loss of net longwave radiation.


2013 ◽  
Vol 13 (7) ◽  
pp. 19421-19470 ◽  
Author(s):  
G. de Boer ◽  
M. D. Shupe ◽  
P. M. Caldwell ◽  
S. E. Bauer ◽  
P. O. G. Persson ◽  
...  

Abstract. Atmospheric measurements from the Arctic Summer Cloud Ocean Study (ASCOS) are used to evaluate the performance of three reanalyses (ERA-Interim, NCEP/NCAR and NCEP/DOE) and two global climate models (CAM5 and NASA GISS ModelE2) in simulation of the high Arctic environment. Quantities analyzed include near surface meteorological variables such as temperature, pressure, humidity and winds, surface-based estimates of cloud and precipitation properties, the surface energy budget, and lower atmospheric temperature structure. In general, the models perform well in simulating large scale dynamical quantities such as pressure and winds. Near-surface temperature and lower atmospheric stability, along with surface energy budget terms are not as well represented due largely to errors in simulation of cloud occurrence, phase and altitude. Additionally, a development version of CAM5, which features improved handling of cloud macro physics, is demonstrated to improve simulation of cloud properties and liquid water amount. The ASCOS period additionally provides an excellent example of the need to evaluate individual budget terms, rather than simply evaluating the net end product, with large compensating errors between individual surface energy budget terms resulting in the best net energy budget.


2014 ◽  
Vol 53 (9) ◽  
pp. 2114-2129 ◽  
Author(s):  
Prathap Ramamurthy ◽  
Elie Bou-Zeid ◽  
James A. Smith ◽  
Zhihua Wang ◽  
Mary L. Baeck ◽  
...  

AbstractUrban facets—the walls, roofs, and ground in built-up terrain—are often conceptualized as homogeneous surfaces, despite the obvious variability in the composition and material properties of the urban fabric at the subfacet scale. This study focuses on understanding the influence of this subfacet heterogeneity, and the associated influence of different material properties, on the urban surface energy budget. The Princeton Urban Canopy Model, which was developed with the ability to capture subfacet variability, is evaluated at sites of various building densities and then applied to simulate the energy exchanges of each subfacet with the atmosphere over a densely built site. The analyses show that, although all impervious built surfaces convert most of the incoming energy into sensible heat rather than latent heat, sensible heat fluxes from asphalt pavements and dark rooftops are 2 times as high as those from concrete surfaces and light-colored roofs. Another important characteristic of urban areas—the shift in the peak time of sensible heat flux in comparison with rural areas—is here shown to be mainly linked to concrete’s high heat storage capacity as well as to radiative trapping in the urban canyon. The results also illustrate that the vegetated pervious soil surfaces that dot the urban landscape play a dual role: during wet periods they redistribute much of the available energy into evaporative fluxes but when moisture stressed they behave more like an impervious surface. This role reversal, along with the direct evaporation of water stored over impervious surfaces, significantly reduces the overall Bowen ratio of the urban site after rain events.


Sign in / Sign up

Export Citation Format

Share Document