scholarly journals A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing

2010 ◽  
Vol 37 (7-8) ◽  
pp. 1643-1660 ◽  
Author(s):  
Joseph Sedlar ◽  
Michael Tjernström ◽  
Thorsten Mauritsen ◽  
Matthew D. Shupe ◽  
Ian M. Brooks ◽  
...  
2009 ◽  
Vol 22 (9) ◽  
pp. 2316-2334 ◽  
Author(s):  
John E. Walsh ◽  
William L. Chapman ◽  
Diane H. Portis

Abstract Arctic radiative fluxes, cloud fraction, and cloud radiative forcing are evaluated from four currently available reanalysis models using data from the North Slope of Alaska (NSA) Barrow site of the Atmospheric Radiation Measurement Program (ARM). A primary objective of the ARM–NSA program is to provide a high-resolution dataset of direct measurements of Arctic clouds and radiation so that global climate models can better parameterize high-latitude cloud radiative processes. The four reanalysis models used in this study are the 1) NCEP–NCAR global reanalysis, 2) 40-yr ECMWF Re-Analysis (ERA-40), 3) NCEP–NCAR North American Regional Reanalysis (NARR), and 4) Japan Meteorological Agency and Central Research Institute of Electric Power Industry 25-yr Reanalysis (JRA25). The reanalysis models simulate the radiative fluxes well if/when the cloud fraction is simulated correctly. However, the systematic errors of climatological reanalysis cloud fractions are substantial. Cloud fraction and radiation biases show considerable scatter, both in the annual mean and over a seasonal cycle, when compared to those observed at the ARM–NSA. Large seasonal cloud fraction biases have significant impacts on the surface energy budget. Detailed comparisons of ARM and reanalysis products reveal that the persistent low-level cloud fraction in summer is particularly difficult for the reanalysis models to capture creating biases in the shortwave radiation flux that can exceed 160 W m−2. ERA-40 is the best performer in both shortwave and longwave flux seasonal representations at Barrow, largely because its simulation of the cloud coverage is the most realistic of the four reanalyses. Only two reanalyses (ERA-40 and NARR) capture the observed transition from positive to negative surface net cloud radiative forcing during a 2–3-month period in summer, while the remaining reanalyses indicate a net warming impact of Arctic clouds on the surface energy budget throughout the entire year. The authors present a variable cloud radiative forcing metric to diagnose the erroneous impact of reanalysis cloud fraction on the surface energy balance. The misrepresentations of cloud radiative forcing in some of the reanalyses are attributable to errors in both simulated cloud amounts and the models’ radiative response to partly cloudy conditions.


2015 ◽  
Vol 28 (15) ◽  
pp. 6267-6280 ◽  
Author(s):  
Nathaniel B. Miller ◽  
Matthew D. Shupe ◽  
Christopher J. Cox ◽  
Von P. Walden ◽  
David D. Turner ◽  
...  

Abstract The surface energy budget plays a critical role in determining the mass balance of the Greenland Ice Sheet, which in turn has significant implications for global sea levels. Nearly three years of data (January 2011–October 2013) are used to characterize the annual cycle of surface radiative fluxes and cloud radiative forcing (CRF) from the central Greenland Ice Sheet at Summit Station. The annual average CRF is 33 W m−2, representing a substantial net cloud warming of the central Greenland surface. Unlike at other Arctic sites, clouds warm the surface during the summer. The surface albedo is high at Summit throughout the year, limiting the cooling effect of the shortwave CRF and thus the total CRF is dominated by cloud longwave warming effects in all months. All monthly mean CRF values are positive (warming), as are 98.5% of 3-hourly cases. The annual cycle of CRF is largely driven by the occurrence of liquid-bearing clouds, with a minimum in spring and maximum in late summer. Optically thick liquid-bearing clouds [liquid water path (LWP) > 30 g m−2] produce an average longwave CRF of 85 W m−2. Shortwave CRF is sensitive to solar zenith angle and LWP. When the sun is well above the horizon (solar zenith angle < 65°), a maximum cloud surface warming occurs in the presence of optically thin liquid-bearing clouds. Ice clouds occur frequently above Summit and have mean longwave CRF values ranging from 10 to 60 W m−2, dependent on cloud thickness.


2014 ◽  
Vol 71 (8) ◽  
pp. 2994-3003 ◽  
Author(s):  
Timothy W. Cronin

Abstract Idealized climate modeling studies often choose to neglect spatiotemporal variations in solar radiation, but doing so comes with an important decision about how to average solar radiation in space and time. Since both clear-sky and cloud albedo are increasing functions of the solar zenith angle, one can choose an absorption-weighted zenith angle that reproduces the spatial- or time-mean absorbed solar radiation. Calculations are performed for a pure scattering atmosphere and with a more detailed radiative transfer model and show that the absorption-weighted zenith angle is usually between the daytime-weighted and insolation-weighted zenith angles but much closer to the insolation-weighted zenith angle in most cases, especially if clouds are responsible for much of the shortwave reflection. Use of daytime-average zenith angle may lead to a high bias in planetary albedo of approximately 3%, equivalent to a deficit in shortwave absorption of approximately 10 W m−2 in the global energy budget (comparable to the radiative forcing of a roughly sixfold change in CO2 concentration). Other studies that have used general circulation models with spatially constant insolation have underestimated the global-mean zenith angle, with a consequent low bias in planetary albedo of approximately 2%–6% or a surplus in shortwave absorption of approximately 7–20 W m−2 in the global energy budget.


2020 ◽  
Author(s):  
Louis Le Toumelin ◽  
Charles Amory ◽  
Vincent Favier ◽  
Christoph Kittel ◽  
Stefan Hofer ◽  
...  

Abstract. In order to understand the evolution of the climate of Antarctica, dominant processes that control surface and low-atmosphere meteorology need to be accurately captured in climate models. We used the regional climate model MAR (v3.11) at 10 km horizontal resolution, forced by ERA5 reanalysis over a 9-year period (2010–2018), to study the impact of drifting snow (designing here the wind-driven transport of snow particles below and above 2 m) on the near-surface atmosphere and surface in Adelie Land, East Antarctica. Two model runs were performed, respectively with and without drifting snow, and compared to half-hourly in situ observations at D17, a coastal and windy location of Adelie Land. We show that sublimation of drifting-snow particles in the atmosphere drives the difference between model runs and is responsible for significant impacts on the near-surface atmosphere. By cooling the low atmosphere and increasing its relative humidity, drifting snow also reduces sensible and latent heat exchanges at the surface (−5.9 W m−2 on average). Moreover, large and dense drifting-snow layers act as near-surface cloud by interacting with incoming radiative fluxes, enhancing incoming longwave radiations and reducing incoming shortwave radiations in summer (net radiative forcing: 5.9 W m−2). Even if drifting snow modifies these processes involved in surface-atmosphere interactions, the total surface energy budget is only slightly modified by introducing drifting snow, because of compensating effects in surface energy fluxes. The drifting-snow driven effects are not prominent near the surface but peak higher in the boundary layer (fifth vertical level, 38 m) where drifting snow sublimation is the most pronounced. Accounting for drifting snow in MAR generally improves the comparison at D17, more especially for the representation of relative humidity (mean bias reduced from −11.1 % to 2.9 %) and incoming longwave radiation (mean bias reduced from −7.6 W m−2 to −1.5 W m−2). Consequently, our results suggest that a detailed representation of drifting-snow processes is required in climate models to better capture the near–surface meteorology and surface–atmosphere interactions in coastal Adelie Land.


2007 ◽  
Vol 29 (2-3) ◽  
pp. 131-156 ◽  
Author(s):  
Asgeir Sorteberg ◽  
Vladimir Kattsov ◽  
John E. Walsh ◽  
Tatyana Pavlova

2021 ◽  
Author(s):  
Raleigh Grysko ◽  
Jacqueline Oehri ◽  
Gabriela Schaepman-Strub

<div> <p>The Arctic is undergoing amplified climate warming, and temperature and precipitation are predicted to increase even more in the future. Increased climate warming is indicative of changes in the surface energy budget, which lies at the heart of the carbon and water budget. The surface energy budget is an important driver of many earth system processes, and yet has received little attention in the past.</p> </div><div> <p>The goal of this study is to further develop our understanding in the spatio-temporal variability of Arctic surface energy fluxes. Specifically, we will investigate the magnitude and dependence on changes in energy flux drivers interannually at different sites across the Arctic. We used<span> </span><em>in situ</em><span> </span>data from 10 sites gathered from the FLUXNET2015, Arctic Observatory Network, and European Fluxes Database Center repositories. All study sites are of 60° N or higher and spread across the Arctic. The chosen sites include Chokurdakh, Russia (147.5° E, 70.8° N), Cherskiy, Russia (161.3° E, 68.6° N), Kaamanen,, Finland (27.3° E, 69.1° N), Imnavait Creek, USA (-149.3° E, 68.6° N), Zackenberg Heath, Greenland (-20.6° E, 74.5° N), Tiksi, Russia (128.9° E, 71.6° N), Sodankyla, Finland (26.6° E, 67.4° N), Poker Flat, USA (-147.5° E, 65.1° N), Nuuk, Greenland (-51.4° E, 64.1° N), and Samoylov, Russia (126.5° E, 72.4° N). Using these data, we analyzed the interannual variability of surface energy fluxes including net radiation, sensible, latent, and ground heat fluxes, and Bowen ratio including their dependence on potential drivers, such as temperature, wind speed, atmospheric stability, and vapor pressure deficit.</p> </div><p>Our results on interannual variability in surface energy fluxes and flux drivers inform long term climate model simulations across the Arctic, which is critical for the improved prediction of the state and development of the surface energy budget and drivers under current and future conditions in this vulnerable, rapidly changing, and understudied region.</p>


2008 ◽  
Vol 8 (16) ◽  
pp. 4787-4798 ◽  
Author(s):  
J. Li ◽  
X. Ma ◽  
K. von Salzen ◽  
S. Dobbie

Abstract. The optical properties of sea-salt aerosol have been parameterized at shortwave and longwave wavelengths. The optical properties were parameterized in a simple functional form in terms of the ambient relative humidity based on Mie optical property calculations. The proposed parameterization is tested relative to Mie calculations and is found to be accurate to within a few percent. In the parameterization, the effects of the size distribution on the optical properties are accounted for in terms of effective radius of the sea-salt size distribution. This parameterization differs from previous works by being formulated directly with the wet sea-salt size distribution and, to our knowledge, this is the first published sea-salt parameterization to provide a parameterization for both shortwave and longwave wavelengths. We have used this parameterization in a set of idealized 1-D radiative transfer calculations to investigate the sensitivity of various attributes of sea-salt forcing, including the dependency on sea-salt column loading, effective variance, solar angle, and surface albedo. From these sensitivity tests, it is found that sea-salt forcings for both shortwave and longwave spectra are linearly related to the sea-salt loading for realistic values of loadings. The radiative forcing results illustrate that the shortwave forcing is an order of magnitude greater than the longwave forcing results and opposite in sign, for various loadings. Forcing sensitivity studies show that the influence of effective variance for sea-salt is minor; therefore, only one value of effective variance is used in the parameterization. The dependence of sea-salt forcing with solar zenith angle illustrates an interesting result that sea-salt can generate a positive top-of-the-atmosphere result (i.e. warming) when the solar zenith angle is relatively small (i.e. <30°). Finally, it is found that the surface albedo significantly affects the shortwave radiative forcing, with the forcing diminishing to zero as the surface albedo tends to unity.


Sign in / Sign up

Export Citation Format

Share Document