Marine cold-air outbreaks in the future: an assessment of IPCC AR4 model results for the Northern Hemisphere

2007 ◽  
Vol 30 (7-8) ◽  
pp. 871-885 ◽  
Author(s):  
Erik W. Kolstad ◽  
Thomas J. Bracegirdle
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Jinlong Huang ◽  
Peter Hitchcock ◽  
Amanda C. Maycock ◽  
Christine M. McKenna ◽  
Wenshou Tian

AbstractSevere cold air outbreaks have significant impacts on human health, energy use, agriculture, and transportation. Anomalous behavior of the Arctic stratospheric polar vortex provides an important source of subseasonal-to-seasonal predictability of Northern Hemisphere cold air outbreaks. Here, through reanalysis data for the period 1958–2019 and climate model simulations for preindustrial conditions, we show that weak stratospheric polar vortex conditions increase the risk of severe cold air outbreaks in mid-latitude East Asia by 100%, in contrast to only 40% for moderate cold air outbreaks. Such a disproportionate increase is also found in Europe, with an elevated risk persisting more than three weeks. By analysing the stream of polar cold air mass, we show that the polar vortex affects severe cold air outbreaks by modifying the inter-hemispheric transport of cold air mass. Using a novel method to assess Granger causality, we show that the polar vortex provides predictive information regarding severe cold air outbreaks over multiple regions in the Northern Hemisphere, which may help with mitigating their impact.


2021 ◽  
Author(s):  
Erik T. Smith ◽  
Scott Sheridan

Abstract Historical and future simulated temperature data from five climate models in the Coupled Model Intercomparing Project Phase 6 (CMIP6) are used to understand how climate change might alter cold air outbreaks (CAOs) in the future. Three different Shared Socioeconomic Pathways (SSPs), SSP 1 – 2.6, SSP 2 – 4.5, and SSP 5 – 8.5 are examined to identify potential fluctuations in CAOs across the globe between 2015 and 2054. Though CAOs may remain persistent or even increase in some regions through 2040, all five climate models show CAOs disappearing by 2054 based on current climate percentiles. Climate models were able to accurately simulate the spatial distribution and trends of historical CAOs, but there were large errors in the simulated interannual frequency of CAOs in the North Atlantic and North Pacific. Fluctuations in complex processes, such as Atlantic Meridional Overturning Circulation, may be contributing to each model’s inability to simulate historical CAOs in these regions.


2016 ◽  
Vol 29 (6) ◽  
pp. 1999-2014 ◽  
Author(s):  
Jennifer Fletcher ◽  
Shannon Mason ◽  
Christian Jakob

Abstract A comparison of marine cold air outbreaks (MCAOs) in the Northern and Southern Hemispheres is presented, with attention to their seasonality, frequency of occurrence, and strength as measured by a cold air outbreak index. When considered on a gridpoint-by-gridpoint basis, MCAOs are more severe and more frequent in the Northern Hemisphere (NH) than the Southern Hemisphere (SH) in winter. However, when MCAOs are viewed as individual events regardless of horizontal extent, they occur more frequently in the SH. This is fundamentally because NH MCAOs are larger and stronger than those in the SH. MCAOs occur throughout the year, but in warm seasons and in the SH they are smaller and weaker than in cold seasons and in the NH. In both hemispheres, strong MCAOs occupy the cold air sector of midlatitude cyclones, which generally appear to be in their growth phase. Weak MCAOs in the SH occur under generally zonal flow with a slight northward component associated with weak zonal pressure gradients, while weak NH MCAOs occur under such a wide range of conditions that no characteristic synoptic pattern emerges from compositing. Strong boundary layer deepening, warming, and moistening occur as a result of the surface heat fluxes within MCAOs.


2019 ◽  
Vol 76 (5) ◽  
pp. 1245-1264 ◽  
Author(s):  
Jinlong Huang ◽  
Wenshou Tian

Abstract This study analyzes the differences and similarities of Eurasian cold air outbreaks (CAOs) under the weak (CAOW), strong (CAOS), and neutral (CAON) stratospheric polar vortex states and examines the potential links between the polar vortex and Eurasian CAOs. The results indicate that the colder surface air temperature (SAT) over Europe in the earlier stages of CAOW events is likely because the amplitude of the preexisting negative North Atlantic Oscillation pattern is larger in CAOW events than in CAON and CAOS events. Marked by the considerably negative stratospheric Arctic Oscillation signals entering the troposphere, the SAT at midlatitudes over eastern Eurasia in CAOW events is colder than in CAON events. A larger diabatic heating rate related to a positive sensible heat flux anomaly in CAOW events likely offsets, to some degree, the cooling effect caused by the stronger cold advection and makes the differences in area-averaged SAT anomalies over northern Eurasia between the CAOW and CAON events look insignificant in most stages. Massive anomalous waves from the low-latitude western Pacific merge over northeastern Eurasia, then weaken the westerly wind over this region to create favorable conditions for southward advection of cold air masses in the earlier stages of all three types of CAOs. This study further analyzes the interannual relationship between the stratospheric polar vortex strength and the intensity of Eurasian CAOs and finds that climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) relative to the reanalysis dataset tend to underestimate the correlation between them. The relationship between them is strengthening under representative concentration pathway 4.5 (RCP4.5) and 8.5 (RCP8.5) scenarios over the period 2006–60. In addition, the intensity of Eurasian CAOs exhibits a decreasing trend in the past and in the future.


Sign in / Sign up

Export Citation Format

Share Document