A model study of factors influencing projected changes in regional sea level over the twenty-first century

2010 ◽  
Vol 36 (9-10) ◽  
pp. 2015-2033 ◽  
Author(s):  
Anne K. Pardaens ◽  
J. M. Gregory ◽  
J. A. Lowe
2014 ◽  
Vol 124 (1-2) ◽  
pp. 317-332 ◽  
Author(s):  
A. B. A. Slangen ◽  
M. Carson ◽  
C. A. Katsman ◽  
R. S. W. van de Wal ◽  
A. Köhl ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Sitar Karabil ◽  
Edwin H. Sutanudjaja ◽  
Erwin Lambert ◽  
Marc F. P. Bierkens ◽  
Roderik S. W. Van de Wal

Change in Land Water Storage (LWS) is one of the main components driving sea-level rise over the twenty-first century. LWS alteration results from both human activities and climate change. Up to now, all components to sea-level change are usually quantified upon a certain climate change scenario except land water changes. Here, we propose to improve this by analyzing the contribution of LWS to regional sea-level change by considering five Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models forced by three different Representative Concentration Pathway (RCP) greenhouse gas emission scenarios. For this analysis, we used LWS output of the global hydrological and water resources model, PCR-GLOBWB 2, in order to project regional sea-level patterns. Projections of ensemble means indicate a range of LWS-driven sea-level rise with larger differences in projections among climate models than between scenarios. Our results suggest that LWS change will contribute around 10% to the projected global mean sea-level rise by the end of twenty-first century. Contribution of LWS to regional sea-level rise is projected to be considerably larger than the global mean over several regions, up to 60% higher than global average of LWS-driven sea-level rise, including the Pacific islands, the south coast of Africa and the west coast of Australia.


2021 ◽  
Vol 5 (3) ◽  
pp. 481-497
Author(s):  
Mansour Almazroui ◽  
Fahad Saeed ◽  
Sajjad Saeed ◽  
Muhammad Ismail ◽  
Muhammad Azhar Ehsan ◽  
...  

AbstractThis paper presents projected changes in extreme temperature and precipitation events by using Coupled Model Intercomparison Project phase 6 (CMIP6) data for mid-century (2036–2065) and end-century (2070–2099) periods with respect to the reference period (1985–2014). Four indices namely, Annual maximum of maximum temperature (TXx), Extreme heat wave days frequency (HWFI), Annual maximum consecutive 5-day precipitation (RX5day), and Consecutive Dry Days (CDD) were investigated under four socioeconomic scenarios (SSP1-2.6; SSP2-4.5; SSP3-7.0; SSP5-8.5) over the entire globe and its 26 Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) regions. The projections show an increase in intensity and frequency of hot temperature and precipitation extremes over land. The intensity of the hottest days (as measured by TXx) is projected to increase more in extratropical regions than in the tropics, while the frequency of extremely hot days (as measured by HWFI) is projected to increase more in the tropics. Drought frequency (as measured by CDD) is projected to increase more over Brazil, the Mediterranean, South Africa, and Australia. Meanwhile, the Asian monsoon regions (i.e., South Asia, East Asia, and Southeast Asia) become more prone to extreme flash flooding events later in the twenty-first century as shown by the higher RX5day index projections. The projected changes in extremes reveal large spatial variability within each SREX region. The spatial variability of the studied extreme events increases with increasing greenhouse gas concentration (GHG) and is higher at the end of the twenty-first century. The projected change in the extremes and the pattern of their spatial variability is minimum under the low-emission scenario SSP1-2.6. Our results indicate that an increased concentration of GHG leads to substantial increases in the extremes and their intensities. Hence, limiting CO2 emissions could substantially limit the risks associated with increases in extreme events in the twenty-first century.


2020 ◽  
Vol 12 (2) ◽  
pp. 331-335
Author(s):  
Morris W. Foster ◽  
Emily E. Steinhilber

AbstractThe nineteenth-century experiences of yellow fever epidemics in New Orleans and Norfolk present historical parallels for how those cities, and others, are experiencing existential threats from climate change and sea level rise in the twenty-first century. In particular, the nineteenth-century “sanitary reform” movement can be interpreted as a model for challenges facing twenty-first-century “climate resilience” initiatives, including denialism and political obfuscation of scientific debates as well as tensions between short-term profit and the cost of long-term infrastructure investments and between individualism and communitarianism. The history of sanitary reform suggests that, at least in the United States, climate resilience initiatives will advance largely on a regional basis through extended local debates around these and other challenges until resilient infrastructure and practices are taken for granted, much as sanitary waterworks and sewers are today.


2018 ◽  
Vol 8 (7) ◽  
pp. 570-578 ◽  
Author(s):  
Jochen Hinkel ◽  
Jeroen C. J. H. Aerts ◽  
Sally Brown ◽  
Jose A. Jiménez ◽  
Daniel Lincke ◽  
...  

2017 ◽  
Vol 30 (15) ◽  
pp. 5943-5960 ◽  
Author(s):  
Y. Peings ◽  
J. Cattiaux ◽  
S. Vavrus ◽  
Gudrun Magnusdottir

Projected changes in the midlatitude atmospheric circulation at the end of the twenty-first century are investigated using coupled ocean–atmosphere simulations from the Community Earth System Model Large Ensemble (CESM-LENS). Different metrics are used to describe the response of the midlatitude atmospheric dynamics in 40 ensemble members covering the 1920–2100 period. Contrasted responses are identified depending on the season and longitudinal sector that are considered. In winter, a slowdown of the zonal flow and an increase in waviness is found over North America, while the European sector exhibits a reinforced westerly flow and decreased waviness. Extreme temperature events in midlatitudes are more sensitive to thermodynamical than dynamical changes, and a general decrease in the intensity of wintertime cold spells is found. Analyses of individual ensemble members reveal a large spread in circulation changes due to internal variability. Causes for this spread are found to be tied to the Arctic amplification in the Pacific–North American sector and to the polar stratosphere in the North Atlantic. A competition mechanism is also discussed between the midlatitude response to polar versus tropical changes. While the upper-tropospheric tropical warming pushes the jet stream poleward, in winter, Arctic amplification and the weaker polar vortex exert an opposite effect. This competition results in a narrowing of the jet path in the midlatitudes, leading to decreased/unchanged waviness/blockings. This interpretation somewhat reconciles conflicting results between the hypothesized effect of Arctic amplification and projected changes in midlatitude flow characteristics. This study also illustrates that further understanding of regional processes is critical for anticipating changes in the midlatitude dynamics.


2015 ◽  
Vol 28 (2) ◽  
pp. 838-852 ◽  
Author(s):  
Christopher M. Little ◽  
Radley M. Horton ◽  
Robert E. Kopp ◽  
Michael Oppenheimer ◽  
Stan Yip

Abstract The representative concentration pathway (RCP) simulations included in phase 5 of the Coupled Model Intercomparison Project (CMIP5) quantify the response of the climate system to different natural and anthropogenic forcing scenarios. These simulations differ because of 1) forcing, 2) the representation of the climate system in atmosphere–ocean general circulation models (AOGCMs), and 3) the presence of unforced (internal) variability. Global and local sea level rise projections derived from these simulations, and the emergence of distinct responses to the four RCPs depend on the relative magnitude of these sources of uncertainty at different lead times. Here, the uncertainty in CMIP5 projections of sea level is partitioned at global and local scales, using a 164-member ensemble of twenty-first-century simulations. Local projections at New York City (NYSL) are highlighted. The partition between model uncertainty, scenario uncertainty, and internal variability in global mean sea level (GMSL) is qualitatively consistent with that of surface air temperature, with model uncertainty dominant for most of the twenty-first century. Locally, model uncertainty is dominant through 2100, with maxima in the North Atlantic and the Arctic Ocean. The model spread is driven largely by 4 of the 16 AOGCMs in the ensemble; these models exhibit outlying behavior in all RCPs and in both GMSL and NYSL. The magnitude of internal variability varies widely by location and across models, leading to differences of several decades in the local emergence of RCPs. The AOGCM spread, and its sensitivity to model exclusion and/or weighting, has important implications for sea level assessments, especially if a local risk management approach is utilized.


Sign in / Sign up

Export Citation Format

Share Document