scholarly journals The ability of general circulation models to simulate tropical cyclones and their precursors over the North Atlantic main development region

2012 ◽  
Vol 39 (7-8) ◽  
pp. 1559-1576 ◽  
Author(s):  
Anne Sophie Daloz ◽  
Fabrice Chauvin ◽  
Kevin Walsh ◽  
Sally Lavender ◽  
Deborah Abbs ◽  
...  
Ocean Science ◽  
2011 ◽  
Vol 7 (3) ◽  
pp. 389-404 ◽  
Author(s):  
I. Medhaug ◽  
T. Furevik

Abstract. Output from a total of 24 state-of-the-art Atmosphere-Ocean General Circulation Models is analyzed. The models were integrated with observed forcing for the period 1850–2000 as part of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. All models show enhanced variability at multi-decadal time scales in the North Atlantic sector similar to the observations, but with a large intermodel spread in amplitudes and frequencies for both the Atlantic Multidecadal Oscillation (AMO) and the Atlantic Meridional Overturning Circulation (AMOC). The models, in general, are able to reproduce the observed geographical patterns of warm and cold episodes, but not the phasing such as the early warming (1930s–1950s) and the following colder period (1960s–1980s). This indicates that the observed 20th century extreme in temperatures are due to primarily a fortuitous phasing of intrinsic climate variability and not dominated by external forcing. Most models show a realistic structure in the overturning circulation, where more than half of the available models have a mean overturning transport within the observed estimated range of 13–24 Sverdrup. Associated with a stronger than normal AMOC, the surface temperature is increased and the sea ice extent slightly reduced in the North Atlantic. Individual models show potential for decadal prediction based on the relationship between the AMO and AMOC, but the models strongly disagree both in phasing and strength of the covariability. This makes it difficult to identify common mechanisms and to assess the applicability for predictions.


2006 ◽  
Vol 2 (4) ◽  
pp. 633-656
Author(s):  
K. Grosfeld ◽  
G. Lohmann ◽  
N. Rimbu ◽  
K. Fraedrich ◽  
F. Lunkeit

Abstract. We investigate the spatial and temporal characteristics of multidecadal climate variability in the North Atlantic realm, using observational data, proxy data and model results. The dominant pattern of multidecadal variability of SST depicts a monopolar structure in the North Atlantic during the instrumental period with cold (warm) phases during 1900–1925 and 1970–1990 (1870–1890 and 1940–1960). Two atmospheric general circulation models of different complexity forced with global SST over the last century show SLP anomaly patterns from the warm and cold phases of the North Atlantic similar to the corresponding observed patterns. The analysis of a sediment core from Cariaco Basin, a coral record from the northern Red Sea, and a long-term sea level pressure (SLP) reconstruction reveals that the multidecadal mode of the atmospheric circulation characterizes climate variability also in the pre-industrial era. The analyses of SLP reconstruction and proxy data depict a persistent atmospheric mode at least over the last 300 years, where SLP shows a dipolar structure in response to monopolar North Atlantic SST, in a similar way as the models' responses do. The combined analysis of observational and proxy data with model experiments provides an understanding of multidecadal climate modes during the late Holocene. The related patterns are useful for the interpretation of proxy data in the North Atlantic realm.


2016 ◽  
Vol 29 (13) ◽  
pp. 4965-4975 ◽  
Author(s):  
Zhan Su ◽  
Andrew P. Ingersoll ◽  
Feng He

Abstract Previous observations and simulations suggest that an approximate 3°–5°C warming occurred at intermediate depths in the North Atlantic over several millennia during Heinrich stadial 1 (HS1), which induces warm salty water (WSW) lying beneath surface cold freshwater. This arrangement eventually generates ocean convective available potential energy (OCAPE), the maximum potential energy releasable by adiabatic vertical parcel rearrangements in an ocean column. The authors find that basin-scale OCAPE starts to appear in the North Atlantic (~67.5°–73.5°N) and builds up over decades at the end of HS1 with a magnitude of about 0.05 J kg−1. OCAPE provides a key kinetic energy source for thermobaric cabbeling convection (TCC). Using a high-resolution TCC-resolved regional model, it is found that this decadal-scale accumulation of OCAPE ultimately overshoots its intrinsic threshold and is released abruptly (~1 month) into kinetic energy of TCC, with further intensification from cabbeling. TCC has convective plumes with approximately 0.2–1-km horizontal scales and large vertical displacements (~1 km), which make TCC difficult to be resolved or parameterized by current general circulation models. The simulation herein indicates that these local TCC events are spread quickly throughout the OCAPE-contained basin by internal wave perturbations. Their convective plumes have large vertical velocities (~8–15 cm s−1) and bring the WSW to the surface, causing an approximate 2°C sea surface warming for the whole basin (~700 km) within a month. This exposes a huge heat reservoir to the atmosphere, which helps to explain the abrupt Bølling–Allerød warming.


2007 ◽  
Vol 3 (1) ◽  
pp. 39-50 ◽  
Author(s):  
K. Grosfeld ◽  
G. Lohmann ◽  
N. Rimbu ◽  
K. Fraedrich ◽  
F. Lunkeit

Abstract. We investigate the spatial and temporal characteristics of multidecadal climate variability in the North Atlantic realm, using observational data, proxy data and model results. The dominant pattern of multidecadal variability of SST depicts a monopolar structure in the North Atlantic during the instrumental period with cold (warm) phases during 1900–1925 and 1970–1990 (1870–1890 and 1940–1960). Two atmospheric general circulation models of different complexity forced with global SST over the last century show SLP anomaly patterns from the warm and cold phases of the North Atlantic similar to the corresponding observed patterns. The analysis of a sediment core from Cariaco Basin, a coral record from the northern Red Sea, and a long-term sea level pressure (SLP) reconstruction reveals that the multidecadal mode of the atmospheric circulation characterizes climate variability also in the pre-industrial era. The analyses of SLP reconstruction and proxy data depict a persistent atmospheric mode at least over the last 300 years, where SLP shows a dipolar structure in response to monopolar North Atlantic SST, in a similar way as the models' responses do. The combined analysis of observational and proxy data with model experiments provides an understanding of multidecadal climate modes during the late Holocene. The related patterns are useful for the interpretation of proxy data in the North Atlantic realm.


2013 ◽  
Vol 26 (2) ◽  
pp. 380-398 ◽  
Author(s):  
Jan-Huey Chen ◽  
Shian-Jiann Lin

Abstract Retrospective seasonal predictions of tropical cyclones (TCs) in the three major ocean basins of the Northern Hemisphere are performed from 1990 to 2010 using the Geophysical Fluid Dynamics Laboratory High-Resolution Atmospheric Model (HiRAM) at 25-km resolution. Atmospheric states are initialized for each forecast, with the sea surface temperature anomaly (SSTA) “persisted” from that at the starting time during the 5-month forecast period (July–November). Using a five-member ensemble, it is shown that the storm counts of both tropical storm (TS) and hurricane categories are highly predictable in the North Atlantic basin during the 21-yr period. The correlations between the 21-yr observed and model predicted storm counts are 0.88 and 0.89 for hurricanes and TSs, respectively. The prediction in the eastern North Pacific is skillful, but it is not as outstanding as that in the North Atlantic. The persistent SSTA assumption appears to be less robust for the western North Pacific, contributing to less skillful predictions in that region. The relative skill in the prediction of storm counts is shown to be consistent with the quality of the predicted large-scale environment in the three major basins. It is shown that intensity distribution of TCs can be captured well by the model if the central sea level pressure is used as the threshold variable instead of the commonly used 10-m wind speed. This demonstrates the feasibility of using the 25-km-resolution HiRAM, a general circulation model designed initially for long-term climate simulations, to study the impacts of climate change on the intensity distribution of TCs.


2011 ◽  
Vol 8 (1) ◽  
pp. 353-396 ◽  
Author(s):  
I. Medhaug ◽  
T. Furevik

Abstract. Output from a total of 24 state-of-the-art Atmosphere-Ocean General Circulation Models is analyzed. The models were integrated with observed forcing for the period 1850–2000 as part of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. All models show enhanced variability at multi-decadal time scales in the North Atlantic sector similar to the observations, but with a large intermodel spread in amplitudes and frequencies for both the Atlantic Multidecadal Oscillation (AMO) and the Atlantic Meridional Overturning Circulation (AMOC). The models, in general, are able to reproduce the observed geographical patterns of warm and cold episodes, but not the phasing such as the early warming (1930s–50s) and the following colder period (1960s–80s). This indicates that the observed 20th century extreme in temperatures are due to primarily a fortuitous phasing of intrinsic climate variability and not dominated by external forcing. Most models show a realistic structure in the overturning circulation, where more than half of the available models have a mean overturning transport within the observed estimated range of 13–24 Sverdrup. Associated with a stronger than normal AMOC, the surface temperature is increased and the sea ice extent slightly reduced in the North Atlantic. Individual models show potential for decadal prediction based on the relationship between the AMO and AMOC, but the models strongly disagree both in phasing and strength of the covariability. This makes it difficult to identify common mechanisms and to assess the applicability for predictions.


2010 ◽  
Vol 138 (10) ◽  
pp. 3858-3868 ◽  
Author(s):  
Ming Zhao ◽  
Isaac M. Held ◽  
Gabriel A. Vecchi

Abstract Retrospective predictions of seasonal hurricane activity in the Atlantic and east Pacific are generated using an atmospheric model with 50-km horizontal resolution by simply persisting sea surface temperature (SST) anomalies from June through the hurricane season. Using an ensemble of 5 realizations for each year between 1982 and 2008, the correlations of the model mean predictions with observations of basin-wide hurricane frequency are 0.69 in the North Atlantic and 0.58 in the east Pacific. In the North Atlantic, a significant part of the degradation in skill as compared to a model forced with observed SSTs during the hurricane season (correlation of 0.78) can be explained by the change from June through the hurricane season in one parameter, the difference between the SST in the main development region and the tropical mean SST. In fact, simple linear regression models with this one predictor perform nearly as well as the full dynamical model for basin-wide hurricane frequency in both the east Pacific and the North Atlantic. The implication is that the quality of seasonal forecasts based on a coupled atmosphere–ocean model will depend in large part on the model’s ability to predict the evolution of this difference between main development region SST and tropical mean SST.


2018 ◽  
Vol 15 (14) ◽  
pp. 4661-4682 ◽  
Author(s):  
Virginie Racapé ◽  
Patricia Zunino ◽  
Herlé Mercier ◽  
Pascale Lherminier ◽  
Laurent Bopp ◽  
...  

Abstract. The North Atlantic Ocean is a major sink region for atmospheric CO2 and contributes to the storage of anthropogenic carbon (Cant). While there is general agreement that the intensity of the meridional overturning circulation (MOC) modulates uptake, transport and storage of Cant in the North Atlantic Subpolar Ocean, processes controlling their recent variability and evolution over the 21st century remain uncertain. This study investigates the relationship between transport, air–sea flux and storage rate of Cant in the North Atlantic Subpolar Ocean over the past 53 years. Its relies on the combined analysis of a multiannual in situ data set and outputs from a global biogeochemical ocean general circulation model (NEMO–PISCES) at 1∕2∘ spatial resolution forced by an atmospheric reanalysis. Despite an underestimation of Cant transport and an overestimation of anthropogenic air–sea CO2 flux in the model, the interannual variability of the regional Cant storage rate and its driving processes were well simulated by the model. Analysis of the multi-decadal simulation revealed that the MOC intensity variability was the major driver of the Cant transport variability at 25 and 36∘ N, but not at OVIDE. At the subpolar OVIDE section, the interannual variability of Cant transport was controlled by the accumulation of Cant in the MOC upper limb. At multi-decadal timescales, long-term changes in the North Atlantic storage rate of Cant were driven by the increase in air–sea fluxes of anthropogenic CO2. North Atlantic Central Water played a key role for storing Cant in the upper layer of the subtropical region and for supplying Cant to Intermediate Water and North Atlantic Deep Water. The transfer of Cant from surface to deep waters occurred mainly north of the OVIDE section. Most of the Cant transferred to the deep ocean was stored in the subpolar region, while the remainder was exported to the subtropical gyre within the lower MOC.


2012 ◽  
Vol 8 (5) ◽  
pp. 1581-1598 ◽  
Author(s):  
V. Mariotti ◽  
L. Bopp ◽  
A. Tagliabue ◽  
M. Kageyama ◽  
D. Swingedouw

Abstract. Marine sediments records suggest large changes in marine productivity during glacial periods, with abrupt variations especially during the Heinrich events. Here, we study the response of marine biogeochemistry to such an event by using a biogeochemical model of the global ocean (PISCES) coupled to an ocean-atmosphere general circulation model (IPSL-CM4). We conduct a 400-yr-long transient simulation under glacial climate conditions with a freshwater forcing of 0.1 Sv applied to the North Atlantic to mimic a Heinrich event, alongside a glacial control simulation. To evaluate our numerical results, we have compiled the available marine productivity records covering Heinrich events. We find that simulated primary productivity and organic carbon export decrease globally (by 16% for both) during a Heinrich event, albeit with large regional variations. In our experiments, the North Atlantic displays a significant decrease, whereas the Southern Ocean shows an increase, in agreement with paleo-productivity reconstructions. In the Equatorial Pacific, the model simulates an increase in organic matter export production but decreased biogenic silica export. This antagonistic behaviour results from changes in relative uptake of carbon and silicic acid by diatoms. Reasonable agreement between model and data for the large-scale response to Heinrich events gives confidence in models used to predict future centennial changes in marine production. In addition, our model allows us to investigate the mechanisms behind the observed changes in the response to Heinrich events.


2013 ◽  
Vol 9 (1) ◽  
pp. 143-185 ◽  
Author(s):  
A. Sima ◽  
M. Kageyama ◽  
D.-D. Rousseau ◽  
G. Ramstein ◽  
Y. Balkanski ◽  
...  

Abstract. European loess sequences of the last glacial period (~ 100–15 kyr BP) show periods of strong dust accumulation alternating with episodes of reduced sedimentation, favoring soil development. In the western part of the loess belt centered around 50° N, these variations appear to have been caused by the North Atlantic rapid climate changes: the Dansgaard-Oeschger (DO) and Heinrich (H) events. It has been recently suggested that the North-Atlantic climate signal can be detected further east, in loess deposits from Stayky (50° 05.65' N, 30° 53.92' E), Ukraine. Here we use climate and dust emission modeling to investigate this data interpretation. We focus on the areas north and northeast of the Carpathians, where loess deposits can be found, and the corresponding main dust sources must have been located as well. The simulations, performed with the LMDZ atmospheric general circulation model and the ORCHIDEE land-surface model, represent a Greenland stadial, a DO interstadial and an H event respectively. Placed in Marine Isotope Stage 3 (~ 60–25 kyr BP) conditions, they only differ by the surface conditions imposed in the North Atlantic between 30° and 63° N. The main source for the loess deposits in the studied area is identified as a dust deflation band, with two very active spots located west–northwest from our reference site. Emissions only occur between February and June. Differences from one deflation spot to another, and from one climate state to another, are explained by analyzing the relevant meteorological and surface variables. Over most of the source region, the annual emission fluxes in the "interstadial" experiment are 30 to 50% lower than the "stadial" values; they would only be about 20% lower if the inhibition of dust uplift by the vegetation were not taken into account. Assuming that lower emissions result in reduced dust deposition leads us to the conclusion that the loess-paleosol stratigraphic succession in the Stayky area reflects indeed North-Atlantic millennial variations. In the main deflation areas of Western Europe, the vegetation effect alone determined most of the ~ 50% stadial-interstadial flux differences. Even if its impact in Eastern Europe is less pronounced, this effect remains a key factor in modulating aeolian emissions at millennial timescale. Conditions favorable to initiating particularly strong dust storms within a few hundred kilometers upwind from our reference site, simulated in the month of April of the "H event" experiment, support the identification of H events as layers of particularly coarse sedimentation in some very detailed profiles.


Sign in / Sign up

Export Citation Format

Share Document