Observational estimation of radiative feedback to surface air temperature over Northern High Latitudes

2017 ◽  
Vol 50 (1-2) ◽  
pp. 615-628 ◽  
Author(s):  
Jiwon Hwang ◽  
Yong-Sang Choi ◽  
WonMoo Kim ◽  
Hui Su ◽  
Jonathan H. Jiang
2019 ◽  
Vol 53 (3-4) ◽  
pp. 1805-1821 ◽  
Author(s):  
Shangfeng Chen ◽  
Renguang Wu ◽  
Linye Song ◽  
Wen Chen

2019 ◽  
Vol 32 (24) ◽  
pp. 8537-8561 ◽  
Author(s):  
Jiao Chen ◽  
Aiguo Dai ◽  
Yaocun Zhang

Abstract Increases in atmospheric greenhouse gases will not only raise Earth’s temperature but may also change its variability and seasonal cycle. Here CMIP5 model data are analyzed to quantify these changes in surface air temperature (Tas) and investigate the underlying processes. The models capture well the mean Tas seasonal cycle and variability and their changes in reanalysis, which shows decreasing Tas seasonal amplitudes and variability over the Arctic and Southern Ocean from 1979 to 2017. Daily Tas variability and seasonal amplitude are projected to decrease in the twenty-first century at high latitudes (except for boreal summer when Tas variability increases) but increase at low latitudes. The day of the maximum or minimum Tas shows large delays over high-latitude oceans, while it changes little at low latitudes. These Tas changes at high latitudes are linked to the polar amplification of warming and sea ice loss, which cause larger warming in winter than summer due to extra heating from the ocean during the cold season. Reduced sea ice cover also decreases its ability to cause Tas variations, contributing to the decreased Tas variability at high latitudes. Over low–midlatitude oceans, larger increases in surface evaporation in winter than summer (due to strong winter winds, strengthened winter winds in the Southern Hemisphere, and increased winter surface humidity gradients over the Northern Hemisphere low latitudes), coupled with strong ocean mixing in winter, lead to smaller surface warming in winter than summer and thus increased seasonal amplitudes there. These changes result in narrower (wider) Tas distributions over the high (low) latitudes, which may have important implications for other related fields.


2007 ◽  
Vol 20 (21) ◽  
pp. 5455-5467 ◽  
Author(s):  
R. J. Stouffer ◽  
R. T. Wetherald

Abstract This study documents the temperature variance change in two different versions of a coupled ocean–atmosphere general circulation model forced with estimates of future increases of greenhouse gas (GHG) and aerosol concentrations. The variance changes are examined using an ensemble of 8 transient integrations for the older model version and 10 transient integrations for the newer one. Monthly and annual data are used to compute the mean and variance changes. Emphasis is placed upon computing and analyzing the variance changes for the middle of the twenty-first century and compared with those found in a control integration. The large-scale variance of lower-tropospheric temperature (including surface air temperature) generally decreases in high latitudes particularly during fall due to a delayed onset of sea ice as the climate warms. Sea ice acts to insolate the atmosphere from the much larger heat capacity of the ocean. Therefore, the near-surface temperature variance tends to be larger over the sea ice–covered regions, than the nearby ice-free regions. The near-surface temperature variance also decreases during the winter and spring due to a general reduction in the extent of sea ice during winter and spring. Changes in storminess were also examined and were found to have relatively little effect upon the reduction of temperature variance. Generally small changes of surface air temperature variance occurred in low and midlatitudes over both land and oceanic areas year-round. An exception to this was a general reduction of variance in the equatorial Pacific Ocean for the newer model. Small increases in the surface air temperature variance occur in mid- to high latitudes during the summer months, suggesting the possibility of more frequent and longer-lasting heat waves in response to increasing GHGs.


2012 ◽  
Vol 29 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Lei Shi ◽  
Ge Peng ◽  
John J. Bates

Abstract High-latitude ocean surface air temperature and humidity derived from intersatellite-calibrated High-Resolution Infrared Radiation Sounder (HIRS) measurements are examined. A neural network approach is used to develop retrieval algorithms. HIRS simultaneous nadir overpass observations from high latitudes are used to intercalibrate observations from different satellites. Investigation shows that if HIRS observations were not intercalibrated, then it could lead to intersatellite biases of 1°C in the air temperature and 1–2 g kg−1 in the specific humidity for high-latitude ocean surface retrievals. Using a full year of measurements from a high-latitude moored buoy site as ground truth, the instantaneous (matched within a half-hour) root-mean-square (RMS) errors of HIRS retrievals are 1.50°C for air temperature and 0.86 g kg−1 for specific humidity. Compared to a large set of operational moored and drifting buoys in both northern and southern oceans greater than 50° latitude, the retrieval instantaneous RMS errors are within 2.6°C for air temperature and 1.4 g kg−1 for specific humidity. Compared to 5 yr of International Maritime Meteorological Archive in situ data, the HIRS specific humidity retrievals show less than 0.5 g kg−1 of differences over the majority of northern high-latitude open oceans.


2015 ◽  
Vol 72 (1) ◽  
pp. 349-368 ◽  
Author(s):  
Yueyue Yu ◽  
Ming Cai ◽  
Rongcai Ren ◽  
Huug M. van den Dool

Abstract This study investigates dominant patterns of daily surface air temperature anomalies in winter (November–February) and their relationship with the meridional mass circulation variability using the daily Interim ECMWF Re-Analysis in 1979–2011. Mass circulation indices are constructed to measure the day-to-day variability of mass transport into the polar region by the warm air branch aloft and out of the polar region by the cold air branch in the lower troposphere. It is shown that weaker warm airmass transport into the upper polar atmosphere is accompanied by weaker equatorward advancement of cold air in the lower troposphere. As a result, the cold air is largely imprisoned within the polar region, responsible for anomalous warmth in midlatitudes and anomalous cold in high latitudes. Conversely, stronger warm airmass transport into the upper polar atmosphere is synchronized with stronger equatorward discharge of cold polar air in the lower troposphere, resulting in massive cold air outbreaks in midlatitudes and anomalous warmth in high latitudes. There are two dominant geographical patterns of cold air outbreaks during the cold air discharge period (or 1–10 days after a stronger mass circulation across 60°N). One represents cold air outbreaks in midlatitudes of both North America and Eurasia, and the other is the dominance of cold air outbreaks only over one of the two continents with abnormal warmth over the other continent. The first pattern mainly corresponds to the first and fourth leading empirical orthogonal functions (EOFs) of daily surface air temperature anomalies in winter, whereas the second pattern is related to the second EOF mode.


Sign in / Sign up

Export Citation Format

Share Document