scholarly journals Impact of large-scale circulation changes in the North Atlantic sector on the current and future Mediterranean winter hydroclimate

2017 ◽  
Vol 50 (5-6) ◽  
pp. 2039-2059 ◽  
Author(s):  
Monika J. Barcikowska ◽  
Sarah B. Kapnick ◽  
Frauke Feser
2006 ◽  
Vol 7 (1) ◽  
pp. 101-113 ◽  
Author(s):  
Daniel Paredes ◽  
Ricardo M. Trigo ◽  
Ricardo Garcia-Herrera ◽  
Isabel Franco Trigo

Abstract March monthly accumulated precipitation in the central and western regions of the Iberian Peninsula presents a clear continuous decline of 50% during the 1960–97 period. A finer analysis using daily data reveals that this trend is exactly confined to the month of March. However, this is merely the most visible aspect of a larger phenomenon over the North Atlantic/European sector. The European precipitation trends in March for the period 1960–2000 show a clear distribution of increasing precipitation in the northern regions (the British Isles and parts of Scandinavia) together with decreasing trends throughout the western Mediterranean Basin. Relevant circulation changes over the North Atlantic and European sectors explain these precipitation trends. First, a regional Eulerian approach by means of a weather-type (WT) classification shows that the major rainfall contributors in March display significantly decreasing frequencies for the Iberian Peninsula, in contrast to the corresponding “wet” weather types for the U.K./Ireland sector, which display increasing frequencies. Within a larger context, a Lagrangian approach, based on the analysis of storm tracks over Europe and the North Atlantic region, reveals dramatic changes in the location of cyclones in the last four decades that coincide with the corresponding precipitation trends in Europe. The North Atlantic Oscillation is suggested to be the most important large-scale factor controlling both the circulation changes and the precipitation trends over the Euro–Atlantic area in March. Finally, the potential impact of reduced precipitation for rivers and water resources in the Iberian Peninsula is considered.


2010 ◽  
Vol 23 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Mihai Dima ◽  
Gerrit Lohmann

Abstract Through its nonlinear dynamics and involvement in past abrupt climate shifts the thermohaline circulation (THC) represents a key element for the understanding of rapid climate changes. The expected THC weakening under global warming is characterized by large uncertainties, and it is therefore of significant importance to identify ocean circulation changes over the last century. By applying various statistical techniques on two global sea surface temperature datasets two THC-related modes are separated. The first one involves relatively slow adjustment of the whole conveyor belt circulation and has an interhemispherically symmetric pattern. The second mode is associated with the relatively fast adjustment of the North Atlantic overturning cell and has the seesaw structure. Based on the separation of these two patterns the authors show that the global conveyor has been weakening since the late 1930s and that the North Atlantic overturning cell suffered an abrupt shift around 1970. The distinction between the two modes provides also a new frame for interpreting past abrupt climate changes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Diana E. Caldarescu ◽  
Thomas Brey ◽  
Doris Abele ◽  
Lars Beierlein ◽  
Gerrit Lohmann ◽  
...  

Bivalve sclerochronological records with annually resolved growth bands are applicable proxies in reconstructing features of the hydro-climate system. Here we evaluate the relationship between growth indices of A. islandica, previously collected at approximately 82 m depth in the North Atlantic, and seasonal subsurface temperature at various depths for the 1900–2005 period. Correlations with sea surface temperature at the collection site are not significant during winter and weak for the remaining seasons. The strongest in-phase correlations persist for summer and autumn below 56 m water depth, whereas weaker correlations are lagged by one or two years. We also observe similarities with distant water bodies in the North Atlantic sector, and a corresponding large-scale oceanographic pattern that increases significantly with water depth along the trajectory of the North Atlantic Current. We suggest that by investigating the relationship with the temperature signal at various depths locally and at large-scale increases the reliability and application of bivalve shells as marine archives.


2021 ◽  
Author(s):  
Alvise Aranyossy ◽  
Sebastian Brune ◽  
Lara Hellmich ◽  
Johanna Baehr

<p>We analyse the connections between the wintertime North Atlantic Oscillation (NAO), the eddy-driven jet stream with the mid-latitude cyclonic activity over the North Atlantic and Europe. We investigate, through the comparison against ECMWF ERA5 and hindcast simulations from the Max Planck Institute Earth System Model (MPI-ESM), the potential for enhancement of the seasonal prediction skill of the Eddy Kinetic Energy (EKE) by accounting for the connections between large-scale climate and the regional cyclonic activity. Our analysis focuses on the wintertime months (December-March) in the 1979-2019 period, with seasonal predictions initialized every November 1st. We calculate EKE from wind speeds at 250 hPa, which we use as a proxy for cyclonic activity. The zonal and meridional wind speeds are bandpass filtered with a cut-off at 3-10 days to fit with the average lifespan of mid-latitude cyclones. </p><p>Preliminary results suggest that in ERA5, major positive anomalies in EKE, both in quantity and duration, are correlated with a northern position of the jet stream and a positive phase of the NAO. Apparently, a deepened Icelandic low-pressure system offers favourable conditions for mid-latitude cyclones in terms of growth and average lifespan. In contrast, negative anomalies in EKE over the North Atlantic and Central Europe are associated with a more equatorward jet stream, these are also linked to a negative phase of the NAO.  Thus, in ERA5, the eddy-driven jet stream and the NAO play a significant role in the spatial and temporal distribution of wintertime mid-latitude cyclonic activity over the North Atlantic and Europe. We extend this connection to the MPI-ESM hindcast simulations and present an analysis of their predictive skill of EKE for wintertime months.</p>


2007 ◽  
Vol 20 (12) ◽  
pp. 2721-2744 ◽  
Author(s):  
Peter G. Baines ◽  
Chris K. Folland

Abstract It is shown that a number of important characteristics of the global atmospheric circulation and climate changed in a near-monotonic fashion over the decade, or less, centered on the late 1960s. These changes were largest or commonest in tropical regions, the Southern Hemisphere, and the Atlantic sector of the Northern Hemisphere. Some, such as the decrease in rainfall in the African Sahel, are well known. Others appear to be new, but their combined extent is global and dynamical linkages between them are evident. The list of affected variables includes patterns of SST; tropical rainfall in the African Sahel and Sudan, the Amazon basin, and northeast Brazil; pressure and SST in the tropical North Atlantic and the west and central Pacific; various branches of the southern Hadley circulation and the southern subtropical jet stream; the summer North Atlantic Oscillation; south Greenland temperature; the Southern Hemisphere storm track; and, quite likely, the Antarctic sea ice boundary. These changes are often strongest in the June–August season; changes are also seen in December–February but are generally smaller. In Greenland, annual mean temperature seems to be affected strongly, reflecting similar changes in SST throughout the year in the higher latitudes of the North Atlantic. Possible causes for these coordinated changes are briefly evaluated. The most likely candidates appear to be a likely reduction in the northward oceanic heat flux associated with the North Atlantic thermohaline circulation in the 1950s to 1970s, which was nearly in phase with a rapid increase in anthropogenic aerosol emissions during the 1950s and 1960s, particularly over Europe and North America.


2005 ◽  
Vol 18 (19) ◽  
pp. 4032-4045 ◽  
Author(s):  
Nikolaus Groll ◽  
Martin Widmann ◽  
Julie M. Jones ◽  
Frank Kaspar ◽  
Stephan J. Lorenz

Abstract To investigate relationships between large-scale circulation and regional-scale temperatures during the last (Eemian) interglacial, a simulation with a general circulation model (GCM) under orbital forcing conditions of 125 kyr BP is compared with a simulation forced with the Late Holocene preindustrial conditions. Consistent with previous GCM simulations for the Eemian, higher northern summer 2-m temperatures are found, which are directly related to the different insolation. Differences in the mean circulation are evident such as, for instance, stronger northern winter westerlies toward Europe, which are associated with warmer temperatures in central and northeastern Europe in the Eemian simulation, while the circulation variability, analyzed by means of a principal component analysis of the sea level pressure (SLP) field, is very similar in both periods. As a consequence of the differences in the mean circulation the simulated Arctic Oscillation (AO) temperature signal in the northern winter, on interannual-to-multidecadal time scales, is weaker during the Eemian than today over large parts of the Northern Hemisphere. Correlations between the AO index and the central European temperature (CET) decrease by about 0.2. The winter and spring SLP anomalies over the North Atlantic/European domain that are most strongly linearly linked to the CET cover a smaller area and are shifted westward over the North Atlantic during the Eemian. However, the strength of the connection between CET and these SLP anomalies is similar in both simulations. The simulated differences in the AO temperature signal and in the SLP anomaly, which is linearly linked to the CET, suggest that during the Eemian the link between the large-scale circulation and temperature-sensitive proxy data from Europe may differ from present-day conditions and that this difference should be taken into account when inferring large-scale climate from temperature-sensitive proxy data.


Sign in / Sign up

Export Citation Format

Share Document