Effects of high-frequency activity on latent heat flux of MJO

2018 ◽  
Vol 52 (3-4) ◽  
pp. 1471-1485 ◽  
Author(s):  
Yingxia Gao ◽  
Pang-Chi Hsu ◽  
Tim Li
2020 ◽  
Vol 55 (11-12) ◽  
pp. 3269-3287
Author(s):  
Renguang Wu ◽  
Yuqi Wang ◽  
Yang Jiao

2021 ◽  
Author(s):  
Neilon Silva ◽  
Aureo Silva de Oliveira ◽  
Maurício Antonio Coelho Filho

Abstract There are several methods for determining the sensible heat flux (H) on natural or agricultural surfaces. One such method is the surface renewal (SR) based on ramps of air temperature measured at high frequency by means of an ultra-thin thermocouple. The micrometeorological tower was installed (13°6'39"S, 39°16'46"W, 154 m anm) to assess the suitability of the method in estimating H on industrial cassava cultivation via calibration in relation to the eddy covariance (EC ), this consisted of a 3D anemometer. In both systems, measurements were made at a frequency of 10 Hz and comprised the period from 17/04 to 25/07/2019 (100 days). In addition to high-frequency measurements of air temperature and sonic temperature, measurements of net radiation and ground heat flux were also made, and all data grouped at 30-min intervals for determination of latent heat flux (LE) via balance solution power. It was found that (a) the SR method was adequate to estimate the sensible heat flux (H) over industrial matched with a calibration coefficient equal to 0.96; (b) under conditions of unstable atmospheric stability (daytime) the SR method showed better performance for estimating H compared to stable atmospheric conditions (nighttime); (c) the SR method proved to be adequate for estimating the latent heat flux (LE), in the industrial cassava cultivation with a high degree of correlation (r2 > 0.90), with the EC method as a reference; and (d) in the area cultivated with industrial cassava, it was found that the heat flux in the soil (G) corresponded on average to 6% of the radiation balance.


2021 ◽  
Author(s):  
Lucas Emilio B. Hoeltgebaum ◽  
Nelson Luís Dias ◽  
Marcelo Azevedo Costa

2021 ◽  
Author(s):  
Andreas Behrendt ◽  
Florian Spaeth ◽  
Volker Wulfmeyer

<p>We will present recent measurements made with the water vapor differential absorption lidar (DIAL) of University of Hohenheim (UHOH). This scanning system has been developed in recent years for the investigation of atmospheric turbulence and land-atmosphere feedback processes.</p><p>The lidar is housed in a mobile trailer and participated in recent years in a number of national and international field campaigns. We will present examples of vertical pointing and scanning measurements, especially close to the canopy. The water vapor gradients in the surface layer are related to the latent heat flux. Thus, with such low-elevation scans, the latent heat flux distribution over different surface characteristics can be monitored, which is important to verify and improve both numerical weather forecast models and climate models.</p><p>The transmitter of the UHOH DIAL consists of a diode-pumped Nd:YAG laser which pumps a Ti:sapphire laser. The output power of this laser is up to 10 W. Two injection seeders are used to switch pulse-to-pulse between the online and offline signals. These signals are then either directly sent into the atmosphere or coupled into a fiber and guided to a transmitting telescope which is attached to the scanner unit. The receiving telescope has a primary mirror with a dimeter of 80 cm. The backscatter signals are recorded shot to shot and are typically averaged over 0.1 to 1 s.</p>


2021 ◽  
Vol 22 (10) ◽  
pp. 2547-2564
Author(s):  
Georg Lackner ◽  
Daniel F. Nadeau ◽  
Florent Domine ◽  
Annie-Claude Parent ◽  
Gonzalo Leonardini ◽  
...  

AbstractRising temperatures in the southern Arctic region are leading to shrub expansion and permafrost degradation. The objective of this study is to analyze the surface energy budget (SEB) of a subarctic shrub tundra site that is subject to these changes, on the east coast of Hudson Bay in eastern Canada. We focus on the turbulent heat fluxes, as they have been poorly quantified in this region. This study is based on data collected by a flux tower using the eddy covariance approach and focused on snow-free periods. Furthermore, we compare our results with those from six Fluxnet sites in the Arctic region and analyze the performance of two land surface models, SVS and ISBA, in simulating soil moisture and turbulent heat fluxes. We found that 23% of the net radiation was converted into latent heat flux at our site, 35% was used for sensible heat flux, and about 15% for ground heat flux. These results were surprising considering our site was by far the wettest site among those studied, and most of the net radiation at the other Arctic sites was consumed by the latent heat flux. We attribute this behavior to the high hydraulic conductivity of the soil (littoral and intertidal sediments), typical of what is found in the coastal regions of the eastern Canadian Arctic. Land surface models overestimated the surface water content of those soils but were able to accurately simulate the turbulent heat flux, particularly the sensible heat flux and, to a lesser extent, the latent heat flux.


Sign in / Sign up

Export Citation Format

Share Document