scholarly journals Re-emergence of North Atlantic subsurface ocean temperature anomalies in a seasonal forecast system

2019 ◽  
Vol 53 (7-8) ◽  
pp. 4799-4820 ◽  
Author(s):  
Jeremy P. Grist ◽  
Bablu Sinha ◽  
Helene. T. Hewitt ◽  
Aurélie Duchez ◽  
Craig MacLachlan ◽  
...  
Science ◽  
2009 ◽  
Vol 324 (5928) ◽  
pp. 778-781 ◽  
Author(s):  
A. T. Evan ◽  
D. J. Vimont ◽  
A. K. Heidinger ◽  
J. P. Kossin ◽  
R. Bennartz

2021 ◽  
Author(s):  
Tamara Collier ◽  
Jamie Kettleborough ◽  
Adam Scaife ◽  
Leon Hermanson ◽  
Philip Davis

<p>It is well known that climate models commonly show biases in the Tropical Atlantic including reduced cold tongue development in the boreal summer. This work investigates whether these biases are present in the Met Office Seasonal Forecast System (GloSea5) at seasonal lead times and the impact they have on teleconnections to the North Atlantic, a key area for forecasting for Northern Europe.</p><p>GloSea5 hindcasts covering the period 1993 – 2016 are analysed for winter and summer start dates and biases are calculated with comparison to ERA Interim for sea surface temperature, near surface winds and upper tropospheric winds, and the Global Precipitation Climatology Project (GPCP) for Rainfall Rate. In contrast to fully developed climate model biases, enhanced cold tongue development is found in the summer months, and a general cold bias occurs in the SST in both winter and summer. This shows that biases in initialised forecasts do not simply asymptote to the climate model error but show more complex behaviour including a change in the sign of the bias. Easterly winds are found to be strengthened throughout and signs of a double Inter Tropical Convergence Zone (ITCZ) are observed in the winter season. The ITCZ in both seasons is shown to be a narrower band of heavier rain in GloSea5 compared to the GPCP.  We investigate how these tropical biases propagate into the North Atlantic and change the forecast biases there.</p>


2013 ◽  
Vol 26 (16) ◽  
pp. 6137-6162 ◽  
Author(s):  
Chunzai Wang ◽  
Liping Zhang

Abstract The Atlantic multidecadal oscillation (AMO) is characterized by the sea surface warming (cooling) of the entire North Atlantic during its warm (cold) phase. Both observations and most of the phase 5 of the Coupled Model Intercomparison Project (CMIP5) models also show that the warm (cold) phase of the AMO is associated with a surface warming (cooling) and a subsurface cooling (warming) in the tropical North Atlantic (TNA). It is further shown that the warm phase of the AMO corresponds to a strengthening of the Atlantic meridional overturning circulation (AMOC) and a weakening of the Atlantic subtropical cell (STC), which both induce an anomalous northward current in the TNA subsurface ocean. Because the mean meridional temperature gradient of the subsurface ocean is positive because of the temperature dome around 9°N, the advection by the anomalous northward current cools the TNA subsurface ocean during the warm phase of the AMO. The opposite is true during the cold phase of the AMO. It is concluded that the anticorrelated ocean temperature variation in the TNA associated with the AMO is caused by the meridional current variation induced by variability of the AMOC and STC, but the AMOC plays a more important role than the STC. Observations do not seem to show an obvious anticorrelated salinity relation between the TNA surface and subsurface oceans, but most of CMIP5 models simulate an out-of-phase salinity variation. Similar to the temperature variation, the mechanism is the salinity advection by the meridional current variation induced by the AMOC and STC associated with the AMO.


2012 ◽  
Vol 53 (60) ◽  
pp. 257-266 ◽  
Author(s):  
E. Rignot ◽  
I. Fenty ◽  
D. Menemenlis ◽  
Y. Xu

AbstractWe examine the pattern of spreading of warm subtropical-origin waters around Greenland for the years 1992–2009 using a high-resolution (4km horizontal grid) coupled ocean and sea-ice simulation. The simulation, provided by the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project, qualitatively reproduces the observed warming of subsurface waters in the subpolar gyre associated with changes of the North Atlantic atmospheric state that occurred in the mid-1990s. The modeled subsurface ocean temperature warmed by 1.5˚C in southeast and southwest Greenland during 1994–2005 and subsequently cooled by 0.5˚C; modeled subsurface ocean temperature increased by 2–2.5˚C in central and then northwest Greenland during 1997–2005 and stabilized thereafter, while it increased after 2005 by <0.5˚C in north Greenland. Comparisons with in situ measurements off the continental shelf in the Labrador and Irminger Seas indicate that the model initial conditions were 0.4˚C too warm in the south but the simulated warming is correctly reproduced; while measurements from eastern Baffin Bay reveal that the model initial conditions were 1.0˚C too cold in the northwest but the simulated ocean warming brought modeled temperature closer to observations, i.e. the simulated warming is 1.0˚C too large. At several key locations, the modeled oceanic changes off the shelf and below the seasonal mixed layer were rapidly transmitted to the shelf within troughs towards (model-unresolved) fjords. Unless blocked in the fjords by shallow sills, these warm subsurface waters had potential to propagate down the fjords and melt the glacier fronts. Based on model sensitivity simulations from an independent study (Xu and others, 2012), we show that the oceanic changes have very likely increased the subaqueous melt rates of the glacier fronts, and in turn impacted the rates of glacier flow.


2011 ◽  
Vol 24 (5) ◽  
pp. 1378-1395 ◽  
Author(s):  
Adrienne Tivy ◽  
Stephen E. L. Howell ◽  
Bea Alt ◽  
John J. Yackel ◽  
Thomas Carrieres

Abstract Canonical correlation analysis (CCA) is used to estimate the levels and sources of seasonal forecast skill for July ice concentration in Hudson Bay over the 1971–2005 period. July is an important transition month in the seasonal cycle of sea ice in Hudson Bay because it is the month when the sea ice clears enough to allow the first passage of ships to the Port of Churchill. Sea surface temperature (quasi global, North Atlantic, and North Pacific), Northern Hemisphere 500-mb geopotential height (z500), sea level pressure (SLP), and regional surface air temperature (SAT) are tested as predictors at 3-, 6-, and 9-month lead times. The model with the highest skill has three predictors—fall North Atlantic SST, fall z500, and fall SAT—and significant tercile forecast skill covering 61% of the Hudson Bay region. The highest skill for a single-predictor model is from fall North Atlantic SST (6-month lead). Fall SST explains 69% of the variance in July ice concentration in Hudson Bay and a possible atmospheric link that accounts for the lagged relationship is presented. CCA diagnostics suggest that changes in the subpolar North Atlantic gyre and the Atlantic multidecadal oscillation (AMO), reflected in sea surface temperature, precedes a deepening/weakening of the winter upper-air ridge northwest of Hudson Bay. Changes in the height of the ridge are reflected in the strength of the winter northwesterly winds over Hudson Bay that have a direct impact on the winter ice thickness distribution; anomalies in winter ice severity are later reflected in the pattern and timing of spring breakup. July ice concentration in Hudson Bay has declined by approximately 20% per decade between 1979 and 2007, and the hypothesized link to the AMO may help explain this significant loss of ice.


Sign in / Sign up

Export Citation Format

Share Document